【图像算法】彩色图像分割专题七:基于分水岭的彩色分割

本文涉及的产品
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频通用资源包5000点
简介:

【图像算法】彩色图像分割专题七:基于分水岭的彩色分割

      SkySeraph July 7th 2011  HQU

Email:zgzhaobo@gmail.com    QQ:452728574

Latest Modified Date:July 7th 2011 HQU

------------------------------------------------------------------------------------------------------------------------

》原理

分水岭算法有好好几种实现算法,拓扑学,形态学,浸水模拟和降水模拟等,最常用的就是Soille和Vincent首先提出的模拟浸没的算法,该算法分割结果效果好,速度快,具有较强的实用性,其简要概括如下。其它更多细节见后文给出的参考资料,不再细述。

Vincent和Soille算法包括2个部分:第一个部分是排序;第二部分为泛洪。算法描述如下:

(1)将根据图像中每个像素的RGB值根据公式Gray=0.299R+0.587G+0.114B得到与之对应的灰度值。

(2)根据Sobel算子得到图像的梯度。(边缘像素的梯度为其邻域像素的梯度,梯度范围为0-255)

(3)对梯度进行从小到大的排序,相同的梯度为同一个梯度层级。

(4)处理第一个梯度层级所有的像素,如果其邻域已经被标识属于某一个区域,则将这个像素加入一个先进先出的队列。

(5)先进先出队列非空时,弹出第一个元素。扫描该像素的邻域像素,如果其邻域像素的梯度属于同一层(梯度相等),则根据邻域像素的标识来刷新该像素的标识。一直循环到队列为空。

(6)再次扫描当前梯度层级的像素,如果还有像素未被标识,说明它是一个新的极小区域,则当前区域的值(当前区域的值从0开始计数)加1后赋值给该为标识的像素。然后从该像素出发继续执行步骤5的泛洪直至没有新的极小区域。

(7)返回步骤4,处理下一个梯度层级的像素,直至所有梯度层级的像素都被处理。流程如下:

------------------------------------------------------------------------------------------------------------------------

》源码

核心代码(部分源码来源网络,修改并做了很详细的注释)

 

函数模块

 

-----------------------------------------------------------------------------------------------------------------------

》效果

找了一辆车做测试,效果勉强,运行速度很慢。

原图:

轮廓:

轮廓图:

------------------------------------------------------------------------------------------------------------------------

》参考资料:

Watershed (image processing): http://en.wikipedia.org/wiki/Watershed_(image_processing)

IMAGE SEGMENTATION AND MATHEMATICAL MORPHOLOGY http://cmm.ensmp.fr/~beucher/wtshed.html

分水岭算法(Watershed Algorithm):http://hi.baidu.com/changfeng01200/blog/item/0ed6920b51f82e1794ca6bc5.html

分水岭分割方法:http://hi.baidu.com/huangwenzhixin/blog/item/039d5713c81bf62add5401e2.html

分水岭算法简单实现http://blog.csdn.net/tt2com/article/details/6321610

分水岭分割算法http://hi.baidu.com/%CA%D8%CD%FB%CC%EC%B1%DF%B5%C4%D4%C2/blog/item/57926db72b319ee531add1d2.html

 

------------------------------------------------------------------------------------------------------------------------

Author:         SKySeraph

Email/GTalk: zgzhaobo@gmail.com    QQ:452728574

From:         http://www.cnblogs.com/skyseraph/

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.

目录
相关文章
|
存储 传感器 自动驾驶
几种常见的点云格式数据解析与在线预览
3D模型在线转换网站支持pcd、pts、xyz、las、laz、asc、ply等点云格式文件在线预览,同时支持将点云格式在线转换为ply、xyz等模型格式。
6664 1
|
算法 计算机视觉
OpenCV(四十):图像分割—漫水填充
OpenCV(四十):图像分割—漫水填充
543 0
|
8月前
|
传感器 人工智能 物联网
穿戴科技新风尚:智能服装设计与技术全解析
穿戴科技新风尚:智能服装设计与技术全解析
670 85
|
8月前
|
人工智能 API 语音技术
HarmonyOS Next~鸿蒙AI功能开发:Core Speech Kit与Core Vision Kit的技术解析与实践
本文深入解析鸿蒙操作系统(HarmonyOS)中的Core Speech Kit与Core Vision Kit,探讨其在AI功能开发中的核心能力与实践方法。Core Speech Kit聚焦语音交互,提供语音识别、合成等功能,支持多场景应用;Core Vision Kit专注视觉处理,涵盖人脸检测、OCR等技术。文章还分析了两者的协同应用及生态发展趋势,展望未来AI技术与鸿蒙系统结合带来的智能交互新阶段。
526 31
|
机器学习/深度学习 编解码 算法
YOLOv8改进 | 主干网络 | 增加网络结构增强小目标检测能力【独家创新——附结构图】
YOLOv8在小目标检测上存在挑战,因卷积导致信息丢失。本文教程将原网络结构替换为更适合小目标检测的backbone,并提供结构图。通过讲解原理和手把手教学,指导如何修改代码,提供完整代码实现,适合新手实践。文章探讨了大特征图对小目标检测的重要性,如细节保留、定位精度、特征丰富度和上下文信息,并介绍了FPN等方法。YOLOv8流程包括预处理、特征提取、融合和检测。修改后的网络结构增加了上采样和concatenate步骤,以利用更大特征图检测小目标。完整代码和修改后的结构图可在文中链接获取。
|
存储 算法
【树】数据结构——树和二叉树的概念&笔记
【树】数据结构——树和二叉树的概念&笔记
|
JavaScript
vue实现多个el-form表单提交统一校验的2个方法
vue实现多个el-form表单提交统一校验的2个方法
1090 0
|
Ubuntu
ubuntu安装protobuf
ubuntu安装protobuf
466 1
|
安全 Java Windows
不可或缺的BCUninstaller:全面显示软件信息、批量垃圾删除、强制卸载程序……
不可或缺的BCUninstaller:全面显示软件信息、批量垃圾删除、强制卸载程序……
389 0
|
搜索推荐 算法
EasyRec在公开数据集上的benchmark测试
在pai平台上可公开读取的数据集,不用再费劲去下载和处理数据集: Taobao 数据集介绍 Avazu CTR 数据集 AliCCP 数据集 CENSUS 数据集
671 0

热门文章

最新文章