threading多线程总结

简介:

threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。python当前版本的多线程库没有实现优先级、线程组,线程也不能被停止、暂停、恢复、中断。

threading模块提供的类:  
Thread, Lock, Rlock, Condition, [Bounded]Semaphore, Event, Timer, local。

threading 模块提供的常用方法: 
threading.currentThread(): 返回当前的线程变量。 
threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。 
threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

threading 模块提供的常量:

  threading.TIMEOUT_MAX 设置threading全局超时时间。

Thread类

Thread是线程类,有两种使用方法,直接传入要运行的方法或从Thread继承并覆盖run():

# coding:utf-8import threadingimport time#方法一:将要执行的方法作为参数传给Thread的构造方法def action(arg):
    time.sleep(1)    print 'the arg is:%s\r' %argfor i in xrange(4):
    t =threading.Thread(target=action,args=(i,))
    t.start()print 'main thread end!'#方法二:从Thread继承,并重写run()class MyThread(threading.Thread):    def __init__(self,arg):
        super(MyThread, self).__init__()#注意:一定要显式的调用父类的初始化函数。
        self.arg=arg    def run(self):#定义每个线程要运行的函数
        time.sleep(1)        print 'the arg is:%s\r' % self.argfor i in xrange(4):
    t =MyThread(i)
    t.start()print 'main thread end!'

构造方法: 
Thread(group=None, target=None, name=None, args=(), kwargs={}) 

  group: 线程组,目前还没有实现,库引用中提示必须是None; 
target: 要执行的方法; 
name: 线程名; 
args/kwargs: 要传入方法的参数。

实例方法: 
isAlive(): 返回线程是否在运行。正在运行指启动后、终止前。 
get/setName(name): 获取/设置线程名。 

  start():  线程准备就绪,等待CPU调度
is/setDaemon(bool): 获取/设置是后台线程(默认前台线程(False))。(在start之前设置)

    如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,主线程和后台线程均停止
         如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止
start(): 启动线程。 
join([timeout]): 阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的timeout(可选参数)。

使用例子一(未设置setDeamon): 

# coding:utf-8import threadingimport timedef action(arg):
    time.sleep(1)    print  'sub thread start!the thread name is:%s\r' % threading.currentThread().getName()    print 'the arg is:%s\r' %arg
    time.sleep(1)for i in xrange(4):
    t =threading.Thread(target=action,args=(i,))
    t.start()print 'main_thread end!'

 

main_thread end!
sub thread start!the thread name is:Thread-2
the arg is:1
the arg is:0
sub thread start!the thread name is:Thread-4
the arg is:2
the arg is:3
Process finished with exit code 0
可以看出,创建的4个“前台”线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止

验证了serDeamon(False)(默认)前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,主线程停止。

使用例子二(setDeamon=True)

# coding:utf-8import threadingimport timedef action(arg):
    time.sleep(1)    print  'sub thread start!the thread name is:%s\r' % threading.currentThread().getName()    print 'the arg is:%s\r' %arg
    time.sleep(1)for i in xrange(4):
    t =threading.Thread(target=action,args=(i,))
    t.setDaemon(True)#设置线程为后台线程
    t.start()print 'main_thread end!'
main_thread end!Process finished with exit code 0

可以看出,主线程执行完毕后,后台线程不管是成功与否,主线程均停止

验证了serDeamon(True)后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,主线程均停止。

使用例子三(设置join)

#coding:utf-8import threadingimport timedef action(arg):
    time.sleep(1)    print  'sub thread start!the thread name is:%s    ' % threading.currentThread().getName()    print 'the arg is:%s   ' %arg
    time.sleep(1)

thread_list = []    #线程存放列表for i in xrange(4):
    t =threading.Thread(target=action,args=(i,))
    t.setDaemon(True)
    thread_list.append(t)for t in thread_list:
    t.start()for t in thread_list:
    t.join()

 

sub thread start!the thread name is:Thread-2    
the arg is:1   
sub thread start!the thread name is:Thread-3    
the arg is:2   
sub thread start!the thread name is:Thread-1    
the arg is:0   
sub thread start!the thread name is:Thread-4    
the arg is:3   
main_thread end!

Process finished with exit code 0

设置join之后,主线程等待子线程全部执行完成后或者子线程超时后,主线程才结束

验证了 join()阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的timeout,即使设置了setDeamon(True)主线程依然要等待子线程结束。

使用例子四(join不妥当的用法,使多线程编程顺序执行)

#coding:utf-8import threadingimport timedef action(arg):
    time.sleep(1)    print  'sub thread start!the thread name is:%s    ' % threading.currentThread().getName()    print 'the arg is:%s   ' %arg
    time.sleep(1)for i in xrange(4):
    t =threading.Thread(target=action,args=(i,))
    t.setDaemon(True)
    t.start()
    t.join()print 'main_thread end!'

 

sub thread start!the thread name is:Thread-1    
the arg is:0   
sub thread start!the thread name is:Thread-2    
the arg is:1   
sub thread start!the thread name is:Thread-3    
the arg is:2   
sub thread start!the thread name is:Thread-4    
the arg is:3   
main_thread end!

Process finished with exit code 0
可以看出此时,程序只能顺序执行,每个线程都被上一个线程的join阻塞,使得“多线程”失去了多线程意义。

Lock、Rlock类

由于线程之间随机调度:某线程可能在执行n条后,CPU接着执行其他线程。为了多个线程同时操作一个内存中的资源时不产生混乱,我们使用锁。

Lock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。

可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。

RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。

百度网盘搜索 http://www.gooln.com

可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。

简言之:Lock属于全局,Rlock属于线程。

构造方法: 
Lock(),Rlock(),推荐使用Rlock()

实例方法: 
acquire([timeout]): 尝试获得锁定。使线程进入同步阻塞状态。 
release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。

例子一(未使用锁):

#coding:utf-8import threadingimport time

gl_num = 0def show(arg):    global gl_num
    time.sleep(1)
    gl_num +=1    print gl_numfor i in range(10):
    t = threading.Thread(target=show, args=(i,))
    t.start()print 'main thread stop'

 

main thread stop12 34568 9910


Process finished with exit code 0

多次运行可能产生混乱。这种场景就是适合使用锁的场景。

例子二(使用锁):

# coding:utf-8import threadingimport time

gl_num = 0

lock = threading.RLock()# 调用acquire([timeout])时,线程将一直阻塞,# 直到获得锁定或者直到timeout秒后(timeout参数可选)。# 返回是否获得锁。def Func():
    lock.acquire()    global gl_num
    gl_num += 1
    time.sleep(1)    print gl_num
    lock.release()for i in range(10):
    t = threading.Thread(target=Func)
    t.start()

 

12345678910Process finished with exit code 0
可以看出,全局变量在在每次被调用时都要获得锁,才能操作,因此保证了共享数据的安全性

Lock对比Rlock

#coding:utf-8import threadinglock = threading.Lock() #Lock对象lock.acquire()lock.acquire()  #产生了死锁。lock.release()lock.release()print lock.acquire()import threading

rLock = threading.RLock()  #RLock对象

rLock.acquire()

rLock.acquire() #在同一线程内,程序不会堵塞。

rLock.release()

rLock.release()

Condition类

  Condition(条件变量)通常与一个锁关联。需要在多个Contidion中共享一个锁时,可以传递一个Lock/RLock实例给构造方法,否则它将自己生成一个RLock实例。

  可以认为,除了Lock带有的锁定池外,Condition还包含一个等待池,池中的线程处于等待阻塞状态,直到另一个线程调用notify()/notifyAll()通知;得到通知后线程进入锁定池等待锁定。

构造方法: 
Condition([lock/rlock])

实例方法: 
acquire([timeout])/release(): 调用关联的锁的相应方法。 
wait([timeout]): 调用这个方法将使线程进入Condition的等待池等待通知,并释放锁。使用前线程必须已获得锁定,否则将抛出异常。 
notify(): 调用这个方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试获得锁定(进入锁定池);其他线程仍然在等待池中。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。 
notifyAll(): 调用这个方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。

例子一:生产者消费者模型

# encoding: UTF-8import threadingimport time# 商品
product = None# 条件变量
con = threading.Condition()# 生产者方法def produce():    global product    if con.acquire():        while True:            if product is None:                print 'produce...'
                product = 'anything'                # 通知消费者,商品已经生产
                con.notify()            # 等待通知
            con.wait()
            time.sleep(2)# 消费者方法def consume():    global product    if con.acquire():        while True:            if product is not None:                print 'consume...'
                product = None                # 通知生产者,商品已经没了
                con.notify()            # 等待通知
            con.wait()
            time.sleep(2)


t1 = threading.Thread(target=produce)
t2 = threading.Thread(target=consume)
t2.start()
t1.start()

 

produce...
consume...
produce...
consume...
produce...
consume...
produce...
consume...
produce...
consume...

Process finished with exit code -1
程序不断循环运行下去。重复生产消费过程。

例子二:生产者消费者模型

import threadingimport time

condition = threading.Condition()
products = 0class Producer(threading.Thread):    def run(self):        global products        while True:            if condition.acquire():                if products < 10:
                    products += 1;                    print "Producer(%s):deliver one, now products:%s" %(self.name, products)
                    condition.notify()#不释放锁定,因此需要下面一句
                    condition.release()                else:                    print "Producer(%s):already 10, stop deliver, now products:%s" %(self.name, products)
                    condition.wait();#自动释放锁定
                time.sleep(2)class Consumer(threading.Thread):    def run(self):        global products        while True:            if condition.acquire():                if products > 1:
                    products -= 1                    print "Consumer(%s):consume one, now products:%s" %(self.name, products)
                    condition.notify()
                    condition.release()                else:                    print "Consumer(%s):only 1, stop consume, products:%s" %(self.name, products)
                    condition.wait();
                time.sleep(2)if __name__ == "__main__":    for p in range(0, 2):
        p = Producer()
        p.start()    for c in range(0, 3):
        c = Consumer()
        c.start()

例子三:

import threading
 
alist = None
condition = threading.Condition() 
def doSet():    if condition.acquire():        while alist is None:
            condition.wait()        for i in range(len(alist))[::-1]:
            alist[i] = 1
        condition.release() 
def doPrint():    if condition.acquire():        while alist is None:
            condition.wait()        for i in alist:            print i,        print
        condition.release() 
def doCreate():    global alist    if condition.acquire():        if alist is None:
            alist = [0 for i in range(10)]
            condition.notifyAll()
        condition.release()
 
tset = threading.Thread(target=doSet,name='tset')
tprint = threading.Thread(target=doPrint,name='tprint')
tcreate = threading.Thread(target=doCreate,name='tcreate')
tset.start()
tprint.start()
tcreate.start()

Event类

  Event(事件)是最简单的线程通信机制之一:一个线程通知事件,其他线程等待事件。Event内置了一个初始为False的标志,当调用set()时设为True,调用clear()时重置为 False。wait()将阻塞线程至等待阻塞状态。

  Event其实就是一个简化版的 Condition。Event没有锁,无法使线程进入同步阻塞状态。

构造方法: 
Event()

实例方法: 
isSet(): 当内置标志为True时返回True。 
set(): 将标志设为True,并通知所有处于等待阻塞状态的线程恢复运行状态。 
clear(): 将标志设为False。 
wait([timeout]): 如果标志为True将立即返回,否则阻塞线程至等待阻塞状态,等待其他线程调用set()。

例子一

# encoding: UTF-8import threadingimport time

event = threading.Event()def func():    # 等待事件,进入等待阻塞状态    print '%s wait for event...' % threading.currentThread().getName()
    event.wait()    # 收到事件后进入运行状态    print '%s recv event.' % threading.currentThread().getName()


t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t1.start()
t2.start()

time.sleep(2)# 发送事件通知print 'MainThread set event.'
event.set()

 

Thread-1 wait for event...
Thread-2 wait for event...#2秒后。。。
MainThread set event.
Thread-1 recv event.
 Thread-2 recv event.

Process finished with exit code 0

timer类

  Timer(定时器)是Thread的派生类,用于在指定时间后调用一个方法。

构造方法: 
Timer(interval, function, args=[], kwargs={}) 
interval: 指定的时间 
function: 要执行的方法 
args/kwargs: 方法的参数

实例方法: 
Timer从Thread派生,没有增加实例方法。

例子一:

# encoding: UTF-8import threadingdef func():    print 'hello timer!'


timer = threading.Timer(5, func)
timer.start()

线程延迟5秒后执行。

local类

  local是一个小写字母开头的类,用于管理 thread-local(线程局部的)数据。对于同一个local,线程无法访问其他线程设置的属性;线程设置的属性不会被其他线程设置的同名属性替换。

  可以把local看成是一个“线程-属性字典”的字典,local封装了从自身使用线程作为 key检索对应的属性字典、再使用属性名作为key检索属性值的细节。

# encoding: UTF-8import threading
 
local = threading.local()
local.tname = 'main' 
def func():
    local.tname = 'notmain'    print local.tname
 
t1 = threading.Thread(target=func)
t1.start()
t1.join() 
print local.tname

 

 

main
















本文转自xmgdc51CTO博客,原文链接:http://blog.51cto.com/12953214/1941230 ,如需转载请自行联系原作者



相关文章
|
4月前
|
数据采集 Java Python
Python并发编程:多线程(threading模块)
Python是一门强大的编程语言,提供了多种并发编程方式,其中多线程是非常重要的一种。本文将详细介绍Python的threading模块,包括其基本用法、线程同步、线程池等,最后附上一个综合详细的例子并输出运行结果。
|
4月前
|
数据采集 Java Python
Python并发编程:多线程(threading模块)
本文详细介绍了Python的threading模块,包括线程的创建、线程同步、线程池的使用,并通过多个示例展示了如何在实际项目中应用这些技术。通过学习这些内容,您应该能够熟练掌握Python中的多线程编程,提高编写并发程序的能力。 多线程编程可以显著提高程序的并发性能,但也带来了新的挑战和问题。在使用多线程时,需要注意避免死锁、限制共享资源的访问,并尽量使用线程池来管理和控制线程。
|
5月前
|
数据处理 调度 Python
Python并发编程实战指南:深入理解线程(threading)与进程(multiprocessing)的奥秘,打造高效并发应用!
【7月更文挑战第8天】Python并发编程探索:使用`threading`模块创建线程处理任务,虽受限于GIL,适合I/O密集型工作。而`multiprocessing`模块通过进程实现多核利用,适用于CPU密集型任务。通过实例展示了线程和进程的创建与同步,强调了根据任务类型选择合适并发模型的重要性。
64 5
|
5月前
|
数据库 数据安全/隐私保护 C++
Python并发编程实战:线程(threading)VS进程(multiprocessing),谁才是并发之王?
【7月更文挑战第10天】Python并发对比:线程轻量级,适合I/O密集型任务,但受GIL限制;进程绕过GIL,擅CPU密集型,但通信成本高。选择取决于应用场景,线程利于数据共享,进程利于多核利用。并发无“王者”,灵活运用方为上策。
61 2
|
5月前
|
API 数据库 C++
震惊!Python并发编程大揭秘:线程(threading)VS进程(multiprocessing),你选对了吗?
【7月更文挑战第8天】在Python并发编程中,线程适合I/O密集型任务,如实时订单处理,而进程适合CPU密集型任务,如商品信息同步。线程利用轻量级并发,处理I/O等待时切换成本低;进程通过multiprocessing模块充分利用多核CPU。根据任务类型选择合适工具,能提升效率并优化系统性能。理解和运用线程与进程,是解决并发问题的关键。
42 0
|
7月前
|
Java Python
Python 内置库 多线程threading使用讲解
本文介绍Python中的线程基础。首先展示了单线程的基本使用,然后通过`threading`模块创建并运行多线程。示例中创建了两个线程执行不同任务,并使用`active_count()`和`enumerate()`检查线程状态。接着讨论了守护线程,主线程默认等待所有子线程完成,但可设置子线程为守护线程使其随主线程一同结束。`join()`方法用于主线程阻塞等待子线程执行完毕,而线程池能有效管理线程,减少频繁创建的开销,Python提供`ThreadPoolExecutor`进行线程池操作。最后提到了GIL(全局解释器锁),它是CPython的机制,限制了多线程并行执行的能力,可能导致性能下降。
|
7月前
|
人工智能 安全 Java
Python 多线程编程实战:threading 模块的最佳实践
Python 多线程编程实战:threading 模块的最佳实践
261 5
|
7月前
|
Python
Python中的多线程可以使用`threading`模块来实现。以下是一个简单的多线程示例,该示例启动两个线程并让它们分别打印数字。
在Python中,使用`threading`模块可实现多线程。以下代码展示了一个简单的例子:创建两个线程`t1`和`t2`,分别打印1-6和6-11的数字。通过`target`参数指定执行函数`print_numbers`,`args`传递参数。启动线程后,用`join()`确保线程执行完毕。注意,多线程访问共享资源可能引发数据竞争,需用锁进行同步控制。
57 0
|
调度 Python
119 python高级 - 多线程threading(二)
119 python高级 - 多线程threading(二)
44 0