第62期CIO时代信息化大讲堂:智能运维与海量日志分析

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
简介:

近年来运维技术飞速发展,运维团队建设了各种系统,虚拟化、容器化、持续集成等等。但如何有效地利用这些系统最终实现站点的高可用、高性能、高可扩展?在大数据时代,智能运维是基于大数据之上的。大数据里90%都是非结构化数据,日志是重要的非结构化数据,日志无处不在,因此,从日志里面挖掘的价值非常高。

2017年9月27日,由中国新一代IT产业推进联盟主办,CIO时代APP承办的"第62期CIO时代信息化大讲堂"活动在北京CIO时代学院报告厅成功举行。日志易项目总监赵亮作为本次活动的特邀讲师,发表了题为《智能运维与海量日志分析》的主题演讲。本次活动吸引了企业技术人员、高校学生、业界CIO等40多人参会,活动现场提问不断,气氛活跃。本次讲座活动由CIO时代APP市场运营张林颖主持。


日志易项目总监 赵亮

他主要从智能运维、小功能介绍、场景分析及价值以及机器学习四个方面进行了详细阐述。

日志是鲜活的,是可以发声的。他表示,要把机器学习、人工智能应用在运维领域,来实现智能运维,然后两者结合服务于三大模块:服务台、自动化、监控。机器学习、大数据在不同企业的落地技术是不一样的,机器学习在整个行业里还处于一个发展的阶段,跟实际要求的预期还存在一定的差距。

智能运维架构

1、数据采集,采集是基础,包括日志、事件、性能指标。

2、数据存储,主要是非结构化数据存储,日志这种数据是非常典型的。

3、数据分析,把整个数据源进行整体的分析,主要把握深度分析、实时分析两大模块,也是智能运维中最为关键的环节,要很精准的做到非结构化数据分析,来达到想要的指标。

4、数据展现。可以通过可视化、自然语言来实现。

大数据技术应用于IT运维,通过数据分析提升IT运维。Gartner估计,到2017年15%的大企业会积极使用ITOA,而在2014年这一数字只有5%。

ITOA 四种数据源的比较

1、机器数据(日志)。日志无所不在,但不同应用输出的日志内容的完整性、可用性不同。

2、通信数据(网络抓包)。网络流量信息全面,但一些事件未必触发网络流量。

3、代理数据(嵌入代码)。代码级精细监控,但侵入性,会带来安全、稳定、性能问题。

4、探针数据(模拟用户请求)。端到端监控,但不是真实用户度量(Real User Measurement)。

日志管理系统演进

1、日志1.0 数据库。固定的schema无法适任意日志格式,无法处理大数据量。

2、日志2.0 Hadoop/NoSQL。需要开发成本,批处理、实时性差,不支持全文检索。

3、日志3.0 实时搜索分析。实时、灵活、全文检索。

4、日志4.0。主要是应用机器学习、人工智能技术。

日志易的“小功能”主要表现在丰富的数据采集手段、多种数据整理方式、内置多种解析规则、细粒度权限设置、数据脱敏、日志生命周期管理、简单多样的告警手段几个方面,使日志易的“小功能”专业而全面。

场景分析及价值

一、安全审计及合规

2017年6月1日,《中华人民共和国网络安全法》正式实施,其对业务系统安全审计提出了新的要求。日志易既对外做SOC(安全运营中心)的支撑平台,又对内做UBA(用户行为分析)。很多企业在使用之后,满足了合规要求。

二、统一日志管理

目前接入600多个子系统应用日志,202台网络设备日志,45台F5设备日志,47台存储设备日志,每秒产生的200万条日志,由于日志量庞大,为了降低防火墙策略的复杂度以及防火墙流量压力,将网络设备、服务器、业务应用日志通过专门网口接入到内网万兆交换机,直接转发到日志易集群。各业务系统服务器中部署日志易采集agent,用于增量读取业务日志,目前已部署1300多个。

活动现场

在此次讲座中,赵亮先生深度讲解了日志易的内部技术原理,深入浅出。嘉宾们认真听讲,纷纷表示不虚此行。





本文出处:畅享网
本文来自云栖社区合作伙伴畅享网,了解相关信息可以关注vsharing.com网站。
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
10天前
|
机器学习/深度学习 人工智能 资源调度
基于AI的运维资源调度:效率与智能的双重提升
基于AI的运维资源调度:效率与智能的双重提升
82 16
基于AI的运维资源调度:效率与智能的双重提升
|
8天前
|
SQL 关系型数据库 MySQL
MySQL事务日志-Undo Log工作原理分析
事务的持久性是交由Redo Log来保证,原子性则是交由Undo Log来保证。如果事务中的SQL执行到一半出现错误,需要把前面已经执行过的SQL撤销以达到原子性的目的,这个过程也叫做"回滚",所以Undo Log也叫回滚日志。
MySQL事务日志-Undo Log工作原理分析
|
9天前
|
机器学习/深度学习 运维 监控
利用深度学习进行系统健康监控:智能运维的新纪元
利用深度学习进行系统健康监控:智能运维的新纪元
70 30
|
12天前
|
人工智能 运维 Kubernetes
阿里云容器服务AI助手2.0 - 新一代容器智能运维能力
2024年11月,阿里云容器服务团队进一步深度融合现有运维可观测体系,在场景上覆盖了K8s用户的全生命周期,正式推出升级版AI助手2.0,旨在更好地为用户使用和运维K8S保驾护航。
|
6天前
|
消息中间件 机器学习/深度学习 人工智能
AI赋能运维:实现运维任务的智能化自动分配
AI赋能运维:实现运维任务的智能化自动分配
67 23
|
8天前
|
人工智能 运维 监控
AI辅助的运维流程自动化:实现智能化管理的新篇章
AI辅助的运维流程自动化:实现智能化管理的新篇章
319 22
|
3月前
|
运维 Linux Apache
,自动化运维成为现代IT基础设施的关键部分。Puppet是一款强大的自动化运维工具
【10月更文挑战第7天】随着云计算和容器化技术的发展,自动化运维成为现代IT基础设施的关键部分。Puppet是一款强大的自动化运维工具,通过定义资源状态和关系,确保系统始终处于期望配置状态。本文介绍Puppet的基本概念、安装配置及使用示例,帮助读者快速掌握Puppet,实现高效自动化运维。
75 4
|
1天前
|
Kubernetes Java 持续交付
小团队 CI/CD 实践:无需运维,Java Web应用的自动化部署
本文介绍如何使用GitHub Actions和阿里云Kubernetes(ACK)实现Java Web应用的自动化部署。通过CI/CD流程,开发人员无需手动处理复杂的运维任务,从而提高效率并减少错误。文中详细讲解了Docker与Kubernetes的概念,并演示了从创建Kubernetes集群、配置容器镜像服务到设置GitHub仓库Secrets及编写GitHub Actions工作流的具体步骤。最终实现了代码提交后自动构建、推送镜像并部署到Kubernetes集群的功能。整个过程不仅简化了部署流程,还确保了应用在不同环境中的稳定运行。
21 9
|
2月前
|
机器学习/深度学习 运维 监控
智能化运维:从自动化到AIOps的演进之路####
本文深入探讨了IT运维领域如何由传统手工操作逐步迈向高度自动化,并进一步向智能化运维(AIOps)转型的过程。不同于常规摘要仅概述内容要点,本摘要将直接引入一个核心观点:随着云计算、大数据及人工智能技术的飞速发展,智能化运维已成为提升企业IT系统稳定性与效率的关键驱动力。文章详细阐述了自动化工具的应用现状、面临的挑战以及AIOps如何通过预测性分析和智能决策支持,实现运维工作的质变,引领读者思考未来运维模式的发展趋势。 ####
|
2月前
|
机器学习/深度学习 数据采集 人工智能
智能化运维:从自动化到AIOps的演进与实践####
本文探讨了智能运维(AIOps)的崛起背景,深入分析了其核心概念、关键技术、应用场景及面临的挑战,并对比了传统IT运维模式,揭示了AIOps如何引领运维管理向更高效、智能的方向迈进。通过实际案例分析,展示了AIOps在不同行业中的应用成效,为读者提供了对未来智能运维趋势的洞察与思考。 ####
114 1