【技术干货】阿里云构建千万级别架构演变之路

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
对象存储 OSS,20GB 3个月
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 随着云计算的到来,当前已经从IT时代向DT时代开始转型。在云端如何构建千万级架构,本文主要结合阿里云最佳实践经验,向大家分享如何从一个小型网站逐步演变到千万级架构的过程。

本文作者:乔锐杰,现担任上海驻云信息科技有限公司运维总监/架构师。曾任职过黑客讲师、java软件工程师/网站架构师、高级运维、阿里云架构师等职位。维护过上千台服务器,主导过众安保险、新华社等千万级上云架构。在云端运维、分布式集群架构等方面有着丰富的经验。


前言



    一个好的架构是靠演变而来,而不是单纯的靠设计。刚开始做架构设计,我们不可能全方位的考虑到架构的高性能、高扩展性、高安全等各方面的因素。随着业务需求越来越多、业务访问压力越来越大,架构不断的演变及进化,因而造就了一个成熟稳定的大型架构。如淘宝网、Facebook等大型网站的架构,无不从一个小型规模架构,不断进化及演变成为一个大型网站架构。


    随着云计算的到来,当前已经从IT时代向DT时代开始转型。在云端如何构建千万级架构,本文主要结合阿里云最佳实践经验,向大家分享如何从一个小型网站逐步演变到千万级架构的过程。


架构原始阶段:万能的单机

    架构的最原始阶段,即一台ECS服务器搞定一切。传统官网、论坛等应用,只需要一台ECS。对应的web服务器、数据库、静态文件资源等,部署到一台ECS上即可。一般5万pv到30万pv访问量,结合内核参数调优、web应用性能参数调优、数据库调优,基本上能够稳定的运行。

架构采用单台ECS:

架构基础阶段:物理分离web和数据库

    当访问压力达到50万pv到100万pv的时候,部署在一台服务器上面的web应用及数据库等服务应用,会对服务器的CPU/内存/磁盘/带宽等系统资源进行竞争。显然单机已经出现性能瓶颈。我们将web应用和数据库物理分离单独部署,解决对应性能问题。这里的架构采用ECS+RDS:


架构动静分离阶段:静态缓存 + 文件存储

    当访问压力达到100万pv到300万pv的时候,我们看到前端web服务出现性能瓶颈。大量的web请求被堵塞,同时服务器的CPU、磁盘IO、带宽都有压力。这时候我们一方面将网站图片、js、css、html及应用服务相关的文件存储在oss中,另外一方面通过CDN将静态资源分布式缓存在各个节点实现“就近访问”。通过将动态请求、静态请求的访问分离(“动静分离”),有效解决服务器在磁盘IO、带宽方面的访问压力。

架构采用CDN + ECS + OSS + RDS:

架构分布式阶段:负载均衡

    当访问压力达到300万pv到500万pv的时候,虽然“动静分离”有效分离了静态请求的压力,但是动态请求的压力已经让服务器“吃不消”。最直观的现象是,前端访问堵塞、延迟、服务器进程增多、cpu100%,并且出现常见502/503/504的错误码。显然单台web服务器已经满足不了需求,这里需要通过负载均衡技术增加多台web服务器(对应ECS可以选择不同可用区,进一步保障高可用)。因而告别单机的时代,转变分布式架构的阶段。

架构采用CDN+SLB + ECS + OSS + RDS:

架构数据缓存阶段:数据库缓存

    当访问压力达到500万pv到1000万pv,虽然负载均衡结合多台web服务器,解决了动态请求的性能压力。但是这时候我们发现,数据库出现压力瓶颈,常见的现象就是RDS的连接数增加并且堵塞、CPU100%、IOPS飙升。这个时候我们通过数据库缓存,有效减少数据库访问压力,进一步提升性能。

架构采用CDN+SLB +ECS +OSS + 云数据库memcache +RDS :

架构扩展阶段:垂直扩展

    当访问量达到1000万pv到5000万pv,虽然这个时候我们可以看到通过分布式文件系统OSS已经解决了文件存储的性能问题,CDN也已经解决静态资源访问的性能问题。但是当访问压力再次增加,这个时候web服务器和数据库方面依旧是瓶颈。在此我们通过垂直扩展,进一步切分web服务器和数据库的压力,解决性能问题。

“何为垂直扩展,按照不同的业务(或者数据库)切分到不同的服务器(或者数据库)之上,这种切分称之为垂直扩展。”


垂直扩展第一招:业务拆分

在业务层,可以把不同的功能模块拆分到不同的服务器上面进行单独部署。比如,用户模块、订单模块、商品模块等,拆分到不同服务器上面部署。


垂直扩展第二招:读写分离

在数据库层,当结合数据库缓存,数据库压力还是很大的时候。我们通过读写分离的方式,进一步切分及降低数据库的压力。


垂直扩展第三招:分库

结合业务拆分、读写分离,在数据库层,比如我们同样可以把用户模块、订单模块、商品模块等。所涉及的数据库表:用户模块表、订单模块表、商品模块表等,分别存放到不同数据库中,如用户模块库、订单模块库、商品模块库等。然后把不同数据库分别部署到不同服务器中。

架构采用CDN+SLB +ECS +OSS+ 云数据库memcache + RDS读写分离:

架构分布式+大数据阶段:水平扩展

    当访问量达到5000万pv及以上时,真达到千万级架构以上访问量的时候,我们可以看到垂直扩展的架构也已经开始“山穷水尽”。比如,读写分离仅解决“读”的压力,面对高访问量,在数据库“写”的压力上面“力不从心”,出现性能瓶颈。另外,分库虽然将压力拆分到不同数据库中。但单表的数据量达到TB级别以上,显然已经达到传统关系型数据库处理的极限。


水平扩展第一招:增加更多的web服务器

通过业务垂直拆分部署在不同服务器后,当后续压力进一步增大,增加更多的webserver进行水平扩展。


水平扩展第二招:增加更多的SLB

单台SLB也存在单点故障的风险,即SLB也存在性能极限,如QPS最大值为50000。通过DNS轮询,将请求轮询转发至不同可用区的SLB上面,实现SLB水平扩展。


水平扩展第三招:采用分布式缓存

虽然阿里云memcache内存数据库已经是分布式结构,但是同样单一的入口也存在单点故障的风险可能。并且也存在性能极限,如最大吞吐量峰值为512Mbps。所以我们部署多台云数据库memcache版,可以在代码层通过hash算法将数据分别缓存至不同的云数据库memcache版中。


水平扩展第四招:sharding + nosql

面对高并发、大数据的需求,传统的关系型数据库已不再适合。需要采用DRDS(mysql sharding分布式解决方案) + OTS(基于列存储的分布式数据库)对应的分布式数据库来根本性的解决问题。

架构采用CDN+DNS轮询 + SLB + ECS + OSS + 云数据库memcache + DRDS+OTS:

杜绝抄袭,支持开源,我为自己呐喊,百分百原创作者:乔锐杰


好啦~本文到这里就结束了,同时,如果喜欢我们的话就赶紧订阅我们吧~~~每天定时推送新鲜干货~~~也可以关注我们的微信公众号:架构云专家频道每天同步更新哟~~~

相关文章
|
6天前
|
存储 人工智能 并行计算
2025年阿里云弹性裸金属服务器架构解析与资源配置方案
🚀 核心特性与技术创新:提供100%物理机性能输出,支持NVIDIA A100/V100 GPU直通,无虚拟化层损耗。网络与存储优化,400万PPS吞吐量,ESSD云盘IOPS达100万,RDMA延迟<5μs。全球部署覆盖华北、华东、华南及海外节点,支持跨地域负载均衡。典型应用场景包括AI训练、科学计算等,支持分布式训练和并行计算框架。弹性裸金属服务器+OSS存储+高速网络综合部署,满足高性能计算需求。
|
9天前
|
机器学习/深度学习 算法 文件存储
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
20 4
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
|
13天前
|
机器学习/深度学习 算法 文件存储
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
43 10
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
|
16天前
|
机器学习/深度学习 缓存 自然语言处理
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
DeepSeekMoE是一种创新的大规模语言模型架构,融合了专家混合系统(MoE)、多头潜在注意力机制(MLA)和RMSNorm归一化。通过专家共享、动态路由和潜在变量缓存技术,DeepSeekMoE在保持性能的同时,将计算开销降低了40%,显著提升了训练和推理效率。该模型在语言建模、机器翻译和长文本处理等任务中表现出色,具备广泛的应用前景,特别是在计算资源受限的场景下。
323 29
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
|
20天前
|
机器学习/深度学习 安全 算法
十大主流联邦学习框架:技术特性、架构分析与对比研究
联邦学习(FL)是保障数据隐私的分布式模型训练关键技术。业界开发了多种开源和商业框架,如TensorFlow Federated、PySyft、NVFlare、FATE、Flower等,支持模型训练、数据安全、通信协议等功能。这些框架在灵活性、易用性、安全性和扩展性方面各有特色,适用于不同应用场景。选择合适的框架需综合考虑开源与商业、数据分区支持、安全性、易用性和技术生态集成等因素。联邦学习已在医疗、金融等领域广泛应用,选择适配具体需求的框架对实现最优模型性能至关重要。
271 79
十大主流联邦学习框架:技术特性、架构分析与对比研究
|
24天前
|
存储 缓存 关系型数据库
社交软件红包技术解密(六):微信红包系统的存储层架构演进实践
微信红包本质是小额资金在用户帐户流转,有发、抢、拆三大步骤。在这个过程中对事务有高要求,所以订单最终要基于传统的RDBMS,这方面是它的强项,最终订单的存储使用互联网行业最通用的MySQL数据库。支持事务、成熟稳定,我们的团队在MySQL上有长期技术积累。但是传统数据库的扩展性有局限,需要通过架构解决。
65 18
|
9天前
|
传感器 监控 安全
智慧工地云平台的技术架构解析:微服务+Spring Cloud如何支撑海量数据?
慧工地解决方案依托AI、物联网和BIM技术,实现对施工现场的全方位、立体化管理。通过规范施工、减少安全隐患、节省人力、降低运营成本,提升工地管理的安全性、效率和精益度。该方案适用于大型建筑、基础设施、房地产开发等场景,具备微服务架构、大数据与AI分析、物联网设备联网、多端协同等创新点,推动建筑行业向数字化、智能化转型。未来将融合5G、区块链等技术,助力智慧城市建设。
|
2月前
|
Cloud Native API 持续交付
云原生架构下的微服务治理策略与实践####
本文旨在探讨云原生环境下微服务架构的治理策略,通过分析当前面临的挑战,提出一系列实用的解决方案。我们将深入讨论如何利用容器化、服务网格(Service Mesh)等先进技术手段,提升微服务系统的可管理性、可扩展性和容错能力。此外,还将分享一些来自一线项目的经验教训,帮助读者更好地理解和应用这些理论到实际工作中去。 ####
69 0
|
2月前
|
Java 开发者 微服务
从单体到微服务:如何借助 Spring Cloud 实现架构转型
**Spring Cloud** 是一套基于 Spring 框架的**微服务架构解决方案**,它提供了一系列的工具和组件,帮助开发者快速构建分布式系统,尤其是微服务架构。
301 69
从单体到微服务:如何借助 Spring Cloud 实现架构转型
|
2月前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。

热门文章

最新文章