训练深度神经网络的时候需要注意的一些小技巧

简介:

1、准备数据:务必保证有大量、高质量并且带有干净标签的数据,没有如此的数据,学习是不可能的


2、预处理:这个不多说,就是0均值和1方差化


3、minibatch:建议值128,1最好,但是效率不高,但是千万不要用过大的数值,否则很容易过拟合


4、梯度归一化:其实就是计算出来梯度之后,要除以minibatch的数量。这个不多解释


5、下面主要集中说下学习率


总的来说是用一个一般的学习率开始,然后逐渐的减小它

一个建议值是0.1,适用于很多NN的问题,一般倾向于小一点。

一个对于调度学习率的建议:如果在验证集上性能不再增加就让学习率除以2或者5,然后继续,学习率会一直变得很小,到最后就可以停止训练了。

很多人用的一个设计学习率的原则就是监测一个比率(每次更新梯度的norm除以当前weight的norm),如果这个比率在10-3附近,如果小于这个值,学习会很慢,如果大于这个值,那么学习很不稳定,由此会带来失败。

6、使用验证集,可以知道什么时候开始降低学习率,和什么时候停止训练。


7、关于对weight初始化的选择的一些建议:


如果你很懒,直接用0.02*randn(num_params)来初始化,当然别的值你也可以去尝试

如果上面那个不太好使,那么久依次初始化每一个weight矩阵用init_scale / sqrt(layer_width) * randn,init_scale可以被设置为0.1或者1

初始化参数对结果的影响至关重要,要引起重视。

在深度网络中,随机初始化权重,使用SGD的话一般处理的都不好,这是因为初始化的权重太小了。这种情况下对于浅层网络有效,但是当足够深的时候就不行了,因为weight更新的时候,是靠很多weight相乘的,越乘越小,有点类似梯度消失的意思(这句话是我加的)


8、如果训练RNN或者LSTM,务必保证gradient的norm被约束在15或者5(前提还是要先归一化gradient),这一点在RNN和LSTM中很重要。


9、检查下梯度,如果是你自己计算的梯度。


10、如果使用LSTM来解决长时依赖的问题,记得初始化bias的时候要大一点


12、尽可能想办法多的扩增训练数据,如果使用的是图像数据,不妨对图像做一点扭转啊之类的,来扩充数据训练集合。


13、使用dropout


14、评价最终结果的时候,多做几次,然后平均一下他们的结果。




本文转自 stock0991 51CTO博客,原文链接:http://blog.51cto.com/qing0991/1825373
相关文章
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
214 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
77 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
神经网络与深度学习---验证集(测试集)准确率高于训练集准确率的原因
本文分析了神经网络中验证集(测试集)准确率高于训练集准确率的四个可能原因,包括数据集大小和分布不均、模型正则化过度、批处理后准确率计算时机不同,以及训练集预处理过度导致分布变化。
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
93 8
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
86 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决
学习率是深度学习中的关键超参数,它影响模型的训练进度和收敛性,过大或过小的学习率都会对网络训练产生负面影响,需要通过适当的设置和调整策略来优化。
694 0
深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
你的Wicket应用安全吗?揭秘在Apache Wicket中实现坚不可摧的安全认证策略
【8月更文挑战第31天】在当前的网络环境中,安全性是任何应用程序的关键考量。Apache Wicket 是一个强大的 Java Web 框架,提供了丰富的工具和组件,帮助开发者构建安全的 Web 应用程序。本文介绍了如何在 Wicket 中实现安全认证,
56 0