Python多进程并行编程实践-mpi4py的使用

简介:

前言

在高性能计算的项目中我们通常都会使用效率更高的编译型的语言例如C、C++、Fortran等,但是由于Python的灵活性和易用性使得它在发展和验证算法方面备受人们的青睐于是在高性能计算领域也经常能看到Python的身影了。本文简单介绍在Python环境下使用MPI接口在集群上进行多进程并行计算的方法。

MPI(Message Passing Interface)

这里我先对MPI进行一下简单的介绍,MPI的全称是Message Passing Interface,即消息传递接口。

8481c8f592b7f349aa84a1de5c171db681516edf它并不是一门语言,而是一个库,我们可以用Fortran、C、C++结合MPI提供的接口来将串行的程序进行并行化处理,也可以认为Fortran+MPI或者C+MPI是一种再原来串 8481c8f592b7f349aa84a1de5c171db681516edf行语言的基础上扩展出来的并行语言。
8481c8f592b7f349aa84a1de5c171db681516edf它是一种标准而不是特定的实现,具体的可以有很多不同的实现,例如MPICH、OpenMPI等。
8481c8f592b7f349aa84a1de5c171db681516edf它是一种消息传递编程模型,顾名思义,它就是专门服务于进程间通信的。

MPI的工作方式很好理解,我们可以同时启动一组进程,在同一个通信域中不同的进程都有不同的编号,程序员可以利用MPI提供的接口来给不同编号的进程分配不同的任务和帮助进程相互交流最终完成同一个任务。就好比包工头给工人们编上了工号然后指定一个方案来给不同编号的工人分配任务并让工人相互沟通完成任务。

Python中的并行

由于CPython中的GIL的存在我们可以暂时不奢望能在CPython中使用多线程利用多核资源进行并行计算了,因此我们在Python中可以利用多进程的方式充分利用多核资源。

Python中我们可以使用很多方式进行多进程编程,例如os.fork()来创建进程或者通过multiprocessing模块来更方便的创建进程和进程池等。在上一篇《Python多进程并行编程实践-multiprocessing模块》中我们使用进程池来方便的管理Python进程并且通过multiprocessing模块中的Manager管理分布式进程实现了计算的多机分布式计算。

与多线程的共享式内存不同,由于各个进程都是相互独立的,因此进程间通信再多进程中扮演这非常重要的角色,Python中我们可以使用multiprocessing模块中的pipequeueArrayValue等等工具来实现进程间通讯和数据共享,但是在编写起来仍然具有很大的不灵活性。而这一方面正是MPI所擅长的领域,因此如果能够在Python中调用MPI的接口那真是太完美了不是么。

MPI与mpi4py

mpi4py是一个构建在MPI之上的Python库,主要使用Cython编写。mpi4py使得Python的数据结构可以方便的在多进程中传递。

mpi4py是一个很强大的库,它实现了很多MPI标准中的接口,包括点对点通信,组内集合通信、非阻塞通信、重复非阻塞通信、组间通信等,基本上我能想到用到的MPI接口mpi4py中都有相应的实现。不仅是Python对象,mpi4py对numpy也有很好的支持并且传递效率很高。同时它还提供了SWIG和F2PY的接口能够让我们将自己的Fortran或者C/C++程序在封装成Python后仍然能够使用mpi4py的对象和接口来进行并行处理。可见mpi4py的作者的功力的确是非常了得。

mpi4py

这里我开始对在Python环境中使用mpi4py的接口进行并行编程进行介绍。

MPI环境管理

mpi4py提供了相应的接口Init()Finalize()来初始化和结束mpi环境。但是mpi4py通过在__init__.py中写入了初始化的操作,因此在我们from mpi4py import MPI的时候就已经自动初始化mpi环境。

MPI_Finalize()被注册到了Python的C接口Py_AtExit(),这样在Python进程结束时候就会自动调用MPI_Finalize(), 因此不再需要我们显式的去掉用Finalize()

通信域(Communicator)

mpi4py直接提供了相应的通信域的Python类,其中Comm是通信域的基类,IntracommIntercomm是其派生类,这根MPI的C++实现中是相同的。

同时它也提供了两个预定义的通信域对象:
1. 包含所有进程的COMM_WORLD
2. 只包含调用进程本身的COMM_SELF

In [1]: from mpi4py import MPI                  

In [2]: MPI.COMM_SELF                           

Out[2]: <mpi4py.MPI.Intracomm at 0x7f2fa2fd59d0>

In [3]: MPI.COMM_WORLD                          

Out[3]: <mpi4py.MPI.Intracomm at 0x7f2fa2fd59f0>

通信域对象则提供了与通信域相关的接口,例如获取当前进程号、获取通信域内的进程数、获取进程组、对进程组进行集合运算、分割合并等等。

In [4]: comm = MPI.COMM_WORLD                   

In [5]: comm.Get_rank()                         

Out[5]: 0                                       

In [6]: comm.Get_size()                         

Out[6]: 1                                       

In [7]: comm.Get_group()                        

Out[7]: <mpi4py.MPI.Group at 0x7f2fa40fec30>    

In [9]: comm.Split(0, 0)                        

Out[9]: <mpi4py.MPI.Intracomm at 0x7f2fa2fd5bd0>

关于通信域与进程组的操作这里就不细讲了,可以参考Introduction to Groups and Communicators

点对点通信

mpi4py提供了点对点通信的接口使得多个进程间能够互相传递Python的内置对象(基于pickle序列化),同时也提供了直接的数组传递(numpy数组,接近C语言的效率)。

如果我们需要传递通用的Python对象,则需要使用通信域对象的方法中小写的接口,例如send(),recv(),isend()等。

如果需要直接传递数据对象,则需要调用大写的接口,例如Send(),Recv(),Isend()等,这与C++接口中的拼写是一样的。

MPI中的点到点通信有很多中,其中包括标准通信,缓存通信,同步通信和就绪通信,同时上面这些通信又有非阻塞的异步版本等等。这些在mpi4py中都有相应的Python版本的接口来让我们更灵活的处理进程间通信。这里我只用标准通信的阻塞和非阻塞版本来做个举例:

阻塞标准通信

这里我尝试使用mpi4py的接口在两个进程中传递Python list对象。

from mpi4py import MPI

import numpy as np



comm = MPI.COMM_WORLD

rank = comm.Get_rank()

size = comm.Get_size()



if rank == 0:

    data = range(10)

    comm.send(data, dest=1, tag=11)

    print("process {} send {}...".format(rank, data))

else:

    data = comm.recv(source=0, tag=11)

    print("process {} recv {}...".format(rank, data))

执行效果:

zjshao@vaio:~/temp_codes/mpipy$ mpiexec -np 2 python temp.py

process 0 send [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]...

process 1 recv [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]...

非阻塞标准通信

所有的阻塞通信mpi都提供了一个非阻塞的版本,类似与我们编写异步程序不阻塞在耗时的IO上是一样的,MPI的非阻塞通信也不会阻塞消息的传递过程中,这样能够充分利用处理器资源提升整个程序的效率。

来张图看看阻塞通信与非阻塞通信的对比:

非阻塞通信的消息发送和接受:

同样的,我们也可以写一个上面例子的非阻塞版本。

from mpi4py import MPI                                         

import numpy as np                                             

comm = MPI.COMM_WORLD                                          

rank = comm.Get_rank()                                         

size = comm.Get_size()                                         



if rank == 0:                                                  

    data = range(10)                                           

    comm.isend(data, dest=1, tag=11)                           

    print("process {} immediate send {}...".format(rank, data))

else:                                                          

    data = comm.recv(source=0, tag=11)                         

    print("process {} recv {}...".format(rank, data))        

支持Numpy数组

mpi4py的一个很好的特点就是他对Numpy数组有很好的支持,我们可以通过其提供的接口来直接传递数据对象,这种方式具有很高的效率,基本上和C/Fortran直接调用MPI接口差不多(方式和效果)

例如我想传递长度为10的int数组,MPI的C++接口是:

void Comm::Send(const void * buf, int count, const Datatype & datatype, int dest, int tag) const

在mpi4py的接口中也及其类似, Comm.Send()中需要接收一个Python list作为参数,其中包含所传数据的地址,长度和类型。

来个阻塞标准通信的例子:

from mpi4py import MPI                                                 

import numpy as np                                                     



comm = MPI.COMM_WORLD                                                  

rank = comm.Get_rank()                                                 

size = comm.Get_size()                                                 



if rank == 0:                                                          

    data = np.arange(10, dtype='i')                                    

    comm.Send([data, MPI.INT], dest=1, tag=11)                         

    print("process {} Send buffer-like array {}...".format(rank, data))

else:                                                                  

    data = np.empty(10, dtype='i')                                     

    comm.Recv([data, MPI.INT], source=0, tag=11)                       

    print("process {} recv buffer-like array {}...".format(rank, data))

执行效果:

zjshao@vaio:~/temp_codes/mpipy$ /usr/bin/mpiexec -np 2 python temp.py

process 0 Send buffer-like array [0 1 2 3 4 5 6 7 8 9]...

process 1 recv buffer-like array [0 1 2 3 4 5 6 7 8 9]...

组通信

MPI组通信和点到点通信的一个重要区别就是,在某个进程组内所有的进程同时参加通信,mpi4py提供了方便的接口让我们完成Python中的组内集合通信,方便编程同时提高程序的可读性和可移植性。

下面就几个常用的集合通信来小试牛刀吧。

广播

广播操作是典型的一对多通信,将跟进程的数据复制到同组内其他所有进程中。

在Python中我想将一个列表广播到其他进程中:

from mpi4py import MPI                                                     



comm = MPI.COMM_WORLD                                                      

rank = comm.Get_rank()                                                     

size = comm.Get_size()                                                     



if rank == 0:                                                              

    data = range(10)                                                       

    print("process {} bcast data {} to other processes".format(rank, data))

else:                                                                      

    data = None                                                            

    data = comm.bcast(data, root=0)                                            

print("process {} recv data {}...".format(rank, data))  

执行结果:

zjshao@vaio:~/temp_codes/mpipy$ /usr/bin/mpiexec -np 5 python temp.py 

process 0 bcast data [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] to other processes

process 0 recv data [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]...

process 1 recv data [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]...

process 3 recv data [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]...

process 2 recv data [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]...

process 4 recv data [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]...

发散

与广播不同,发散可以向不同的进程发送不同的数据,而不是完全复制。

例如我想将0-9发送到不同的进程中:

m mpi4py import MPI                                                            

import numpy as np                                                                



comm = MPI.COMM_WORLD                                                             

rank = comm.Get_rank()                                                            

size = comm.Get_size()                                                            



recv_data = None                                                                  



if rank == 0:                                                                     

    send_data = range(10)                                                         

    print("process {} scatter data {} to other processes".format(rank, send_data))

else:                                                                             

    send_data = None                                                              

recv_data = comm.scatter(send_data, root=0)                                       

print("process {} recv data {}...".format(rank, recv_data)) 

发散结果:

zjshao@vaio:~/temp_codes/mpipy$ /usr/bin/mpiexec -np 10 python temp.py 

process 0 scatter data [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] to other processes

process 0 recv data 0...

process 3 recv data 3...

process 5 recv data 5...

process 8 recv data 8...

process 2 recv data 2...

process 7 recv data 7...

process 4 recv data 4...

process 1 recv data 1...

process 9 recv data 9...

process 6 recv data 6...

收集

收集过程是发散过程的逆过程,每个进程将发送缓冲区的消息发送给根进程,根进程根据发送进程的进程号将各自的消息存放到自己的消息缓冲区中。

from mpi4py import MPI                                              

import numpy as np                                                  



comm = MPI.COMM_WORLD                                               

rank = comm.Get_rank()                                              

size = comm.Get_size()                                              



send_data = rank                                                    

print "process {} send data {} to root...".format(rank, send_data)  

recv_data = comm.gather(send_data, root=0)                          

if rank == 0:                                                       

    print "process {} gather all data {}...".format(rank, recv_data)

收集结果:

zjshao@vaio:~/temp_codes/mpipy$ /usr/bin/mpiexec -np 5 python temp.py

process 2 send data 2 to root...

process 3 send data 3 to root...

process 0 send data 0 to root...

process 4 send data 4 to root...

process 1 send data 1 to root...

process 0 gather all data [0, 1, 2, 3, 4]...

其他的组内通信还有归约操作等等由于篇幅限制就不多讲了,有兴趣的可以去看看MPI的官方文档和相应的教材。

mpi4py并行编程实践

这里我就上篇中的二重循环绘制map的例子来使用mpi4py进行并行加速处理。

我打算同时启动10个进程来将每个0轴需要计算和绘制的数据发送到不同的进程进行并行计算。
因此我需要将pO2s数组发散到10个进程中:

comm = MPI.COMM_WORLD                

rank = comm.Get_rank()               

size = comm.Get_size()               



if rank == 0:                        

    pO2 = np.linspace(1e-5, 0.5, 10) 

else:                                

    pO2 = None                       

    pO2 = comm.scatter(pO2, root=0)      



pCOs = np.linspace(1e-5, 0.5, 10)    

之后我需要在每个进程中根据接受到的pO2s的数据再进行一次pCOs循环来进行计算。

最终将每个进程计算的结果(TOF)进行收集操作:

comm.gather(tofs_1d, root=0)

由于代码都是涉及的专业相关的东西我就不全列出来了,将mpi4py改过的并行版本放到10个进程中执行可见:

效率提升了10倍左右。

总结

本文简单介绍了mpi4py的接口在python中进行多进程编程的方法,MPI的接口非常庞大,相应的mpi4py也非常庞大,mpi4py还有实现了相应的SWIG和F2PY的封装文件和类型映射,能够帮助我们将Python同真正的C/C++以及Fortran程序在消息传递上实现统一。有兴趣的同学可以进一步研究一下,欢迎交流。



原文发布时间为:2017-02-23 

本文作者:PytLab

本文来自云栖社区合作伙伴“Python中文社区”,了解相关信息可以关注“Python中文社区”微信公众号

相关文章
|
7月前
|
安全 Java 数据处理
Python网络编程基础(Socket编程)多线程/多进程服务器编程
【4月更文挑战第11天】在网络编程中,随着客户端数量的增加,服务器的处理能力成为了一个重要的考量因素。为了处理多个客户端的并发请求,我们通常需要采用多线程或多进程的方式。在本章中,我们将探讨多线程/多进程服务器编程的概念,并通过一个多线程服务器的示例来演示其实现。
|
3月前
|
调度 Python
python3多进程实战(python3经典编程案例)
该文章提供了Python3中使用多进程的实战案例,展示了如何通过Python的标准库`multiprocessing`来创建和管理进程,以实现并发任务的执行。
103 0
|
4月前
|
Python
python Process 多进程编程
python Process 多进程编程
39 1
|
4月前
|
并行计算 开发者 Python
解锁Python多进程编程的超能力:并行计算的魔法与奇迹,探索处理器核心的秘密,让程序性能飞跃!
【8月更文挑战第12天】在Python编程领域,多进程编程是一项关键技能,能有效提升程序效率。本文通过理论与实践结合,深入浅出地介绍了Python中的多进程编程。首先解释了多进程的概念:即操作系统中能够并发执行的多个独立单元,进而提高整体性能。接着重点介绍了`multiprocessing`模块,演示了如何创建和启动进程,以及进程间的通信方式,如队列等。此外,还提到了更高级的功能,例如进程池管理和同步原语等。通过这些实例,读者能更好地理解如何在实际项目中利用多核处理器的优势,同时注意进程间通信和同步等问题,确保程序稳定高效运行。
43 0
|
6月前
|
Python
Python多进程编程详细剖析
Python多进程编程详细剖析
44 3
|
6月前
|
安全 开发者 Python
Python中的多线程与多进程编程
Python作为一种广泛使用的编程语言,在处理并发性能时具有独特的优势。本文将深入探讨Python中的多线程与多进程编程技术,分析其原理和应用,帮助读者更好地理解并发编程在Python中的实现与优化。
|
7月前
|
安全 程序员 数据处理
深入探索Python多进程编程:理论与实践
深入探索Python多进程编程:理论与实践
68 2
|
7月前
|
Python
Python实现多线程或多进程编程。
Python实现多线程或多进程编程。
30 0
|
7月前
|
安全 Python
Python多进程编程中的资源共享与同步问题探讨
Python多进程编程中的资源共享与同步问题探讨
|
7月前
|
Java Python
使用Python的concurrent.futures模块简化多线程与多进程编程
使用Python的concurrent.futures模块简化多线程与多进程编程
下一篇
无影云桌面