Python机器学习算法入门之简单感知器学习算法

简介:

问题背景

考虑一个问题:现在我们有一些过往核发信用卡的资料,包括用户个人信息和审核结果。根据这些资料,我们希望预测能不能给下一个用户发信用卡。用户基本信息如下:


这些基本信息组成了一个向量。不同的信息有不同的权重,设权重向量。我们希望构造一个函数来给用户的信用打分,并且,如果信用分超过了某个阈值,我们就认为这个客户是可靠的,可以给他发信用卡:

能发:
不能:

通过阶跃函数,进一步将这个过程函数化:


所以,当,通过;当,拒绝;当,忽略。

其中: 


整理该方程如下: 


具体到二维空间

简化上面的问题,假设用户只有两个属性,就可以用二维空间的一个点来表示一个用户。如下所示,蓝圈表示通过,红叉表示拒绝。注意到直线的两边,一边大于0,一边小于0,也就是一边都是蓝圈,一边都是红叉。所以现在的目标就是,找到一条直线,可以将已知的蓝圈和红叉完美区分开。


基础知识回顾

简单回顾一下线性代数的知识。一条直线可以由一个点和法向量 唯一确定。其点法式方程为:。相应地,其方向向量为:


感知机学习算法


简单感知机算法(Perceptron Learning Algorithm,PLA)的思路很简单,首先随便找一条直线,然后遍历每一个已知点,如果正确,则跳过;如果错误,则利用这个点的信息对直线进行修正。修正的思路如上图所示:是直线的法向量。是错误点的方向向量,是真实值。具体情况可分为如下两种情况:

情况一:


为了将这个出错的点包括进紫色区域,应该靠近方向。因此,

情况二:


为了将这个出错的点排除出紫色区域,应该远离方向。因此,


综上,得到修正函数:


证明:PLA校正的正确性

那么为什么感知机算法可以逐步接近正确呢?

已知

两边同时乘上,得:

因为,所以:

注意到恰好就是我们给出的当前用户的分数。当,也就是我们打分打低了,修正后分数上升;当,也就是我们打分打高了,修正后分数下降。这个结论说明,对于这组错误数据,经过修正以后,我们打出的分数更靠近正确结果了。

证明:PLA终止的充分条件

从算法的规则上可以看出,PLA终止的必要条件是数据集中确定存在一条直线,可以将蓝圈和红叉分开,也就是线性可分: 


现在证明,线性可分是PLA终止的充分条件。

(1) 设表示第t次更新时的点,一共更新了n次。若线性可分,则必然存在一条完美的直线,使得对,有。也就是:


为向量内积,也就是)又由的更新规则得: 


因此: 


综上,得到: 


初始时,所以: 


(2) 因为每次遇到错误的数据才会更新,也就是。其中 是第t次更新时的权重值。因此: 


类似于(1),得到: 


(3) 综上,得:


是一个常数,因此,随着t的增大,也逐步增大,也就是向量的夹角逐渐减小,逐渐接近。 
又因为:
,所以。因此,PLA算法必然收敛。

Linear Pocket Algorithm

上述PLA算法的前提是数据集线性可分。但是很明显,在分类之前我们不可能知道我们手里的数据是不是线性可分的。更何况,数据集可能有噪声(noise),这些噪声是之前的经验中错误的分类结果,这些噪声将导致PLA无法收敛。因此,我们的目标就从找到一条完美划分数据集的,变成了找到一条最接近完美,使得错误的点最少。这个转变使得我们可以理非线性可分的数据集 :


但是很遗憾的是,寻找 是一个NP-hard问题。

因此问题又从“寻找最接近完美的变成了“寻找尽可能完美的。Pocket Algorithm是PLA的变形,用于处理此类问题。算法如下: 


与简单PLA不同的是:

Pocket Algorithm事先设定迭代次数,而不是等算法自己收敛;
随机遍历数据集,而不是循环遍历;

遇到错误点校正时,只有当新得到的优于(也就是错误更少)时才更新。因为Pocket要比较错误率,需要计算所有的数据点,因此效率要低于PLA。

如果数据集巧合是线性可分的,只要迭代次数够多,Pocket和PLA的效果是一样的,只是速度慢。

实践

讲了这么多理论知识,现在用python实践一下这个算法。简单起见,这里已知数据集是线性可分的,直接采用简单PLA就可以解决。核心代码不到20行,只需要理解train()函数即可,其它部分都是为了把这个图画出来。


运行效果如下: 


原文发布时间为:2017-02-19 

本文作者:ZZR

本文来自云栖社区合作伙伴“Python中文社区”,了解相关信息可以关注“Python中文社区”微信公众号

目录
打赏
0
0
0
0
14291
分享
相关文章
Python学习的自我理解和想法(27)
本文记录了学习Python第27天的内容,主要介绍了使用Python操作PPTX和PDF的技巧。其中包括通过`python-pptx`库创建PPTX文件的详细步骤,如创建幻灯片对象、选择母版布局、编辑标题与副标题、添加文本框和图片,以及保存文件。此外,还讲解了如何利用`PyPDF2`库为PDF文件加密,涵盖安装库、定义函数、读取文件、设置密码及保存加密文件的过程。文章总结了Python在处理文档时的强大功能,并表达了对读者应用这些技能的期待。
企业数据泄露风险防控视域下 Python 布隆过滤器算法的应用研究 —— 怎样防止员工私下接单,监控为例
本文探讨了布隆过滤器在企业员工行为监控中的应用。布隆过滤器是一种高效概率数据结构,具有空间复杂度低、查询速度快的特点,适用于大规模数据过滤场景。文章分析了其在网络访问监控和通讯内容筛查中的实践价值,并通过Python实现示例展示其技术优势。同时,文中指出布隆过滤器存在误判风险,需在准确性和资源消耗间权衡。最后强调构建多维度监控体系的重要性,结合技术与管理手段保障企业运营安全。
61 10
抖音直播间采集提取工具,直播间匿名截流获客软件,Python开发【仅供学习】
这是一套基于Python开发的抖音直播间数据采集与分析系统,包含观众信息获取、弹幕监控及数据存储等功能。代码采用requests、websockets和sqlite3等...
|
2月前
|
Apriori算法的Python实例演示
经过运行,你会看到一些集合出现,每个集合的支持度也会给出。这些集合就是你想要的,经常一起被购买的商品组合。不要忘记,`min_support`参数将决定频繁项集的数量和大小,你可以根据自己的需要进行更改。
110 18
Python学习的自我理解和想法(28)
本文记录了学习Python第28天的内容——冒泡排序。通过B站千锋教育课程学习,非原创代码。文章详细介绍了冒泡排序的起源、概念、工作原理及多种Python实现方式(普通版、进阶版1和进阶版2)。同时分析了其时间复杂度(最坏、最好、平均情况)与空间复杂度,并探讨了实际应用场景(如小规模数据排序、教学示例)及局限性(如效率低下、不适用于高实时性场景)。最后总结了冒泡排序的意义及其对初学者的重要性。
Python学习的自我理解和想法(26)
这是一篇关于使用Python操作Word文档的学习总结,基于B站千锋教育课程内容编写。主要介绍了通过`python-docx`库在Word中插入列表(有序与无序)、表格,以及读取docx文件的方法。详细展示了代码示例与结果,涵盖创建文档对象、添加数据、设置样式、保存文件等步骤。虽为开学后时间有限下的简要记录,但仍清晰梳理了核心知识点,有助于初学者掌握自动化办公技巧。不足之处欢迎指正!
论上网限制软件中 Python 动态衰减权重算法于行为管控领域的创新性应用
在网络安全与行为管理的学术语境中,上网限制软件面临着精准识别并管控用户不合规网络请求的复杂任务。传统的基于静态规则库或固定阈值的策略,在实践中暴露出较高的误判率与较差的动态适应性。本研究引入一种基于 “动态衰减权重算法” 的优化策略,融合时间序列分析与权重衰减机制,旨在显著提升上网限制软件的实时决策效能。
66 2
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
40 10

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问