机器学习之——判定边界和逻辑回归模型的代价函数

简介: 判定边界(Decision Boundary) 上一次我们讨论了一个新的模型——逻辑回归模型(Logistic Regression),在逻辑回归中,我们预测: 当hø大于等于0.5时,预测y=1当hø小于0.5时,预测y=0根据上面的预测,我们绘制出一条S形函数,如下: 根据函数图像,我们知道,当  z=0时,g(z)=0.5 z>0时,g(z)

判定边界(Decision Boundary)

上一次我们讨论了一个新的模型——逻辑回归模型(Logistic Regression),在逻辑回归中,我们预测:

  • 当hø大于等于0.5时,预测y=1
  • 当hø小于0.5时,预测y=0
根据上面的预测,我们绘制出一条S形函数,如下:


根据函数图像,我们知道,当

  •  z=0时,g(z)=0.5
  •  z>0时,g(z)>0.5
  •  z<0时,g(z)<0.5
又有:


所以


以上,为我们预知的逻辑回归的部分内容。好,现在假设我们有一个模型: 并且参数ø是向量 :[-3 1 1]。那么当-3+x1+x2大于等于0,即x1+x2大于等于3时,模型将预测 y=1。

我们可以绘制出来x1+x2=3,这条线便是我们模型的分界线,也称之为判定边界(Decision Boundary),将预测为1的区域和预测为0的区域分隔开。


假设我们的数据呈现出如下图的分布情况,那么我们的模型是什么样才能适合这些数据呢?


如上图,函数图像为一个圆,圆点在原点且半径为1,这样一条曲线来分隔开了 y=1 和 y=0 的区域,所以我们需要的是一个二次方特征:


假设参数为 [-1  0  0  1  1],则我们得到的判定边界恰好是圆点在原点并且半径为1的圆形。

我们可以使用非常复杂的模型来适应非常复杂形状的判定边界。


逻辑回归模型的代价函数(Cost Function)

对于线性回归模型,我们定义的代价函数是所有模型误差的平方和。理论上讲,我们也可以沿用这个定义来对逻辑回归模型使用,但是问题在于,当我们将:

代入到这样定义的代价函数中时,我们得到的代价函数将会是一个非凸函数(Non-covex Function)


这意味着,我们的代价函数将会有许多的局部最小值,这就会影响到梯度下降算法去找寻全局最小值。

因此,我们重新定义逻辑回归的代价函数为:


其中,Cost(hø(x(i), y(i))) 是我们定义的一个代价函数迭代形式,具体表示如下:


hø(x) 与 Cost(hø(x),y)之间的关系是如下图所示:


通过这样构建的Cost(hø(x), y)函数的特点是:

当实际的 y=1 且 hø=1 时,误差为0;当  y=1 但 hø != 1时,误差随hø的变小而变大;

当实际的 y=0 且 hø=0 时,误差代价为0;当 y=0 但 hø != 0 时,误差随hø的变大而变大。

将构建的Cost(hø(x), y) 进行一个简化,可以得到如下简化公式:


这个简化其实是对上面Cost(hø(x), y) 的两种表达式的一次性结合。

将简化代入到代价函数,得到:


这便是逻辑回归模型的代价函数了。

在得到这样的一个代价函数之后,我们便可以使用梯度下降算法(Gradient Descent)来求得能够使代价函数最小的参数了。

梯度下降算法:


对此求导,得到:


*注:虽然得到的梯度下降算法,表面上看上去和线性回归的梯度下降算法一样,但是这里的hø(x) = g(øTX)与线性回归不同,所以实际上是不一样的。另外,在运行梯度下降算法之前,对特征进行特征缩放(Features Scaling)也是非常必要的。


一些梯度下降算法之外的选择:

除了梯度下降算法之外,还有一些常被用来使代价函数最小的算法,这些算法更加复杂和优秀,而且通常情况下,不需要人工选择学习速率,通常也比梯度下降算法更加快速。举一些例子:共轭梯度法(Conjugate Gradient)局部优化法(Broyden Fletcher Goldfarb Shann, BFGS)有限内存局部优化法(LBFGS)。这些算法更加复杂也更加优秀,如果感兴趣我们可以以后再继续讨论。

MatlabOctave中,有一个最小值优化函数,fminunc。使用时,我们需要提供代价函数和每个参数的求导,这里给大家举一个例子:

function [ jVal, gradient ] = costFunction( theta )
%COSTFUNCTION Summary of this function goes here
%   Detailed explanation goes here
    jVal = (theta(1)-5)^2 + (theta(2)-5)^2;
    gradient = zeros(2,1);
    gradient(1) = 2*(theta(1)-5);
    gradient(2) = 2*(theta(2)-5);

end

options = optimset('GradObj', 'on', 'MaxIter', '100');
initialTheta = zeros(2,1);
[optTheta, functionVal, exitFlag] = fminunc(@costFunction, initialTheta, options);

*PS :关于机器学习相关算法的 MatlabOctave代码,我上传到了我的coding.net项目中,有需要的童鞋可以联系我。
相关文章
|
23天前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
8天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
28天前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
53 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
16天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
36 12
|
23天前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
44 8
|
23天前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
44 6
|
26天前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
1月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
27天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
1月前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
38 0