机器学习之——神经网络学习

简介: 很久没更新博客了,这一次我们继续之前的机器学习的课程,这一节我们讨论机器学习里面重要的一个算法——神经网络(Nerual Network)的学习部分。 神经网络的代价函数 首先我们要引入一些标记,以便在后面讨论中使用: 我们回想一下,在逻辑回归(Logistic Regression)问题中,我们的代价函数(Cost Function)如下: 在逻辑回归中,我们只有一个输出

很久没更新博客了,这一次我们继续之前的机器学习的课程,这一节我们讨论机器学习里面重要的一个算法——神经网络(Nerual Network)的学习部分。

神经网络的代价函数

首先我们要引入一些标记,以便在后面讨论中使用:


我们回想一下,在逻辑回归(Logistic Regression)问题中,我们的代价函数(Cost Function)如下:


在逻辑回归中,我们只有一个输出变量,又称作标量(Scalar),也只有一个因变量y,但是在神经网络中,我们可以有很多输出变量,我们的hø(x)是一个维度为K的向量,并且我们训练集中的因变量也是同样维度的一个向量,因此我们的代价函数会比逻辑回归更加复杂一些,如下所示:


这个代价函数看起来复杂很多,但是背后的思想还是一样的。我们希望能够通过代价函数来观察算法预测的结果与真实情况的误差有多大,唯一不同的是,对于每一行特征,我们都会给出K个预测,基本上我们可以利用循环,对每一行特征都预测K个不同的结果,然后再利用循环在K个预测中选择可能性最大的一个,将其与y中的实际数据进行对比。

归一化的哪一项只是排除了每一层的ø0后,每一层的ø矩阵的和。最里层的循环 j 循环所有的行(由si +1层的激活单元书决定),循环 i 则循环所有的列,由该层(si 层)的激活单元数所决定。


反向传播算法(Backpropagation Algorithm)

之前我们在计算神经网络预测结果的时候,我们采用了一种正向传播方法,我们从第一层开始正向一层一层进行计算,直到最后一层的hø(x)。

现在,为了计算代价函数的偏导数:


我们需要采用一种反向传播算法,也就是首先计算最后一层的误差,然后再一层一层反向求出各层的误差,直到倒数第二层。

我们用一个例子来说明反向传播算法。

假设,我们的训练集只有一个实例(x(1), y(1)),我们的神经网络是一个四层的神经网络,其中:K=4,SL=4,L=4 


我们从最后一层的误差开始计算,误差是激活单元的预测()与实际值(yk)之间的误差(k=1:K)。我们用来表示误差,则:


我们利用这个误差值来计算前一层的误差:


其中g'(Z(3))是S形函数的导数,g'(Z(3))=a(3).*(1-a(3))。而则是权重导致的误差的和。

下一步是继续计算第二层的误差:


因为第一层是输入变量,不存在误差。我们有了所有的误差的表达式之后,便可以计算代价函数的偏导数了,假设λ=0,即我们不做任何归一化处理时有:


重要的是清楚地知道上面式子中上下标的含义:


如果我们考虑归一化处理,并且我们的训练集是一个特征矩阵而非向量。在上面的特殊情况中,我们需要计算每一层的误差单元来计算代价函数的偏导数。在更为一般的情况中,我们同样需要计算每一层的误差单元,但是我们需要为整个训练集计算误差单元,此时的误差单元也是一个矩阵,我们用来表示这个误差矩阵。第 l 层的第 i 个激活单元收到第 j 个参数影响而导致的误差。

我们的算法表示为:


即首先使用正向传播方法计算出每一层的激活单元,利用训练集的结果与神经网络预测的结果求出最后一层的误差,然后利用该误差运用反向传播法计算出直至第二层的所有误差。

在求出了之后,我们便可以计算代价函数的偏导数了,计算方法如下:


在Octave或者Matlab中,如果我们使用 fminuc 这样的优化算法求解求出权重矩阵,我们需要将矩阵首先展开为向量,再利用算法求出最优解后再重新转换回矩阵。

假设我们有三个权重矩阵,theta1,theta2和theta3,尺寸分别为10*11,10*11和1*11,下面的代码可以实现这样的转换:


这一次我们讨论到这里,下一回我们继续学习神经网络的梯度检验(Gradient Checking)随机初始化(Random Initialization)

相关文章
|
7天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
37 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
7天前
|
机器学习/深度学习 安全 网络安全
利用机器学习优化网络安全威胁检测
【9月更文挑战第20天】在数字时代,网络安全成为企业和个人面临的重大挑战。传统的安全措施往往无法有效应对日益复杂的网络攻击手段。本文将探讨如何通过机器学习技术来提升威胁检测的效率和准确性,旨在为读者提供一种创新的视角,以理解和实施机器学习在网络安全中的应用,从而更好地保护数据和系统免受侵害。
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习模型之深度神经网络的特点
深度神经网络(Deep Neural Networks, DNNs)是一类机器学习模型,通过多个层级(层)的神经元来模拟人脑的工作方式,从而实现复杂的数据处理和模式识别任务。
25 1
|
18天前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络入门到精通:Python带你搭建AI思维,解锁机器学习的无限可能
【9月更文挑战第10天】神经网络是开启人工智能大门的钥匙,不仅是一种技术,更是模仿人脑思考的奇迹。本文从基础概念入手,通过Python和TensorFlow搭建手写数字识别的神经网络,逐步解析数据加载、模型定义、训练及评估的全过程。随着学习深入,我们将探索深度神经网络、卷积神经网络等高级话题,并掌握优化模型性能的方法。通过不断实践,你将能构建自己的AI系统,解锁机器学习的无限潜能。
14 0
|
27天前
|
Java 前端开发 Apache
Apache Wicket与Spring MVC等Java Web框架大PK,究竟谁才是你的最佳拍档?点击揭秘!
【8月更文挑战第31天】在Java Web开发领域,众多框架各具特色。Apache Wicket以组件化开发和易用性脱颖而出,提高了代码的可维护性和可读性。相比之下,Spring MVC拥有强大的生态系统,但学习曲线较陡;JSF与Java EE紧密集成,但在性能和灵活性上略逊一筹;Struts2虽成熟,但在RESTful API支持上不足。选择框架时还需考虑社区支持和文档完善程度。希望本文能帮助开发者找到最适合自己的框架。
30 0
|
27天前
|
机器学习/深度学习 自然语言处理 TensorFlow
TensorFlow 入门超简单!从零开始构建你的第一个神经网络,开启机器学习精彩之旅!
【8月更文挑战第31天】本文介绍了流行开源机器学习框架 TensorFlow,涵盖其安装与首个神经网络构建步骤。TensorFlow 由 Google 开发,适用于计算机视觉及自然语言处理等领域。掌握它不仅提升就业机会,还加深对机器学习的理解。通过安装 Python 并使用 pip 命令安装 TensorFlow,即可按照示例构建、训练并评估简单的线性回归模型,快速开启机器学习之旅。
22 0
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
1月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
37 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码