【转载】高并发的核心技术-幂等的实现方案

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介:

原文地址:http://blog.csdn.net/rdhj5566/article/details/50646599

一、背景 
我们实际系统中有很多操作,是不管做多少次,都应该产生一样的效果或返回一样的结果。 
例如:
 

1. 前端重复提交选中的数据,应该后台只产生对应这个数据的一个反应结果。 
2. 我们发起一笔付款请求,应该只扣用户账户一次钱,当遇到网络重发或系统bug重发,也应该只扣一次钱; 
3. 发送消息,也应该只发一次,同样的短信发给用户,用户会哭的; 
4. 创建业务订单,一次业务请求只能创建一个,创建多个就会出大问题。 

等等很多重要的情况,这些逻辑都需要幂等的特性来支持。 

二、幂等性概念 
幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。 

在编程中.一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。例如,“getUsername()和setTrue()”函数就是一个幂等函数. 

更复杂的操作幂等保证是利用唯一交易号(流水号)实现. 

我的理解:幂等就是一个操作,不论执行多少次,产生的效果和返回的结果都是一样的 


三、技术方案 
1. 查询操作 
查询一次和查询多次,在数据不变的情况下,查询结果是一样的。select是天然的幂等操作 

2. 删除操作 
删除操作也是幂等的,删除一次和多次删除都是把数据删除。(注意可能返回结果不一样,删除的数据不存在,返回0,删除的数据多条,返回结果多个) 

3.唯一索引,防止新增脏数据 
比如:支付宝的资金账户,支付宝也有用户账户,每个用户只能有一个资金账户,怎么防止给用户创建资金账户多个,那么给资金账户表中的用户ID加唯一索引,所以一个用户新增成功一个资金账户记录 

要点: 
唯一索引或唯一组合索引来防止新增数据存在脏数据 
(当表存在唯一索引,并发时新增报错时,再查询一次就可以了,数据应该已经存在了,返回结果即可)
 

4. token机制,防止页面重复提交 
业务要求: 
页面的数据只能被点击提交一次 
发生原因: 
由于重复点击或者网络重发,或者nginx重发等情况会导致数据被重复提交 
解决办法: 
集群环境:采用token加redis(redis单线程的,处理需要排队) 
单JVM环境:采用token加redis或token加jvm内存 
处理流程: 
1. 数据提交前要向服务的申请token,token放到redis或jvm内存,token有效时间 
2. 提交后后台校验token,同时删除token,生成新的token返回 
token特点: 
要申请,一次有效性,可以限流 

注意:redis要用删除操作来判断token,删除成功代表token校验通过,如果用select+delete来校验token,存在并发问题,不建议使用 

5. 悲观锁 
获取数据的时候加锁获取 
select * from table_xxx where id='xxx' for update; 
注意:id字段一定是主键或者唯一索引,不然是锁表,会死人的 
悲观锁使用时一般伴随事务一起使用,数据锁定时间可能会很长,根据实际情况选用
 

6. 乐观锁 
乐观锁只是在更新数据那一刻锁表,其他时间不锁表,所以相对于悲观锁,效率更高。 

乐观锁的实现方式多种多样可以通过version或者其他状态条件: 
1). 通过版本号实现 
update table_xxx set name=#name#,version=version+1 where version=#version# 
如下图(来自网上): 

 

2). 通过条件限制 
update table_xxx set avai_amount=avai_amount-#subAmount# where avai_amount-#subAmount# >= 0 
要求:quality-#subQuality# >= ,这个情景适合不用版本号,只更新是做数据安全校验,适合库存模型,扣份额和回滚份额,性能更高 

注意:乐观锁的更新操作,最好用主键或者唯一索引来更新,这样是行锁,否则更新时会锁表,上面两个sql改成下面的两个更好 
update table_xxx set name=#name#,version=version+1 where id=#id# and version=#version# 
update table_xxx set avai_amount=avai_amount-#subAmount# where id=#id# and avai_amount-#subAmount# >= 0
 

7. 分布式锁 
还是拿插入数据的例子,如果是分布是系统,构建全局唯一索引比较困难,例如唯一性的字段没法确定,这时候可以引入分布式锁,通过第三方的系统(redis或zookeeper),在业务系统插入数据或者更新数据,获取分布式锁,然后做操作,之后释放锁,这样其实是把多线程并发的锁的思路,引入多多个系统,也就是分布式系统中得解决思路。 

要点:某个长流程处理过程要求不能并发执行,可以在流程执行之前根据某个标志(用户ID+后缀等)获取分布式锁,其他流程执行时获取锁就会失败,也就是同一时间该流程只能有一个能执行成功,执行完成后,释放分布式锁(分布式锁要第三方系统提供) 

8. select + insert 
并发不高的后台系统,或者一些任务JOB,为了支持幂等,支持重复执行,简单的处理方法是,先查询下一些关键数据,判断是否已经执行过,在进行业务处理,就可以了 
注意:核心高并发流程不要用这种方法 

9. 状态机幂等 
在设计单据相关的业务,或者是任务相关的业务,肯定会涉及到状态机(状态变更图),就是业务单据上面有个状态,状态在不同的情况下会发生变更,一般情况下存在有限状态机,这时候,如果状态机已经处于下一个状态,这时候来了一个上一个状态的变更,理论上是不能够变更的,这样的话,保证了有限状态机的幂等。 

注意:订单等单据类业务,存在很长的状态流转,一定要深刻理解状态机,对业务系统设计能力提高有很大帮助 

10. 对外提供接口的api如何保证幂等 
如银联提供的付款接口:需要接入商户提交付款请求时附带:source来源,seq序列号 
source+seq在数据库里面做唯一索引,防止多次付款,(并发时,只能处理一个请求) 

重点: 
对外提供接口为了支持幂等调用,接口有两个字段必须传,一个是来源source,一个是来源方序列号seq,这个两个字段在提供方系统里面做联合唯一索引,这样当第三方调用时,先在本方系统里面查询一下,是否已经处理过,返回相应处理结果;没有处理过,进行相应处理,返回结果。注意,为了幂等友好,一定要先查询一下,是否处理过该笔业务,不查询直接插入业务系统,会报错,但实际已经处理了。
 


总结: 
幂等性应该是合格程序员的一个基因,在设计系统时,是首要考虑的问题,尤其是在像支付宝,银行,互联网金融公司等涉及的都是钱的系统,既要高效,数据也要准确,所以不能出现多扣款,多打款等问题,这样会很难处理,用户体验也不好


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
7月前
|
负载均衡 前端开发 算法
聊聊高并发应用中电商秒杀场景的方案实现
聊聊高并发应用中电商秒杀场景的方案实现
308 0
|
消息中间件 缓存 NoSQL
高并发幂等计数器的设计与实现
高并发幂等计数器的设计与实现
194 0
高并发幂等计数器的设计与实现
|
25天前
|
消息中间件 架构师 数据库
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
45岁资深架构师尼恩分享了一篇关于分布式事务的文章,详细解析了如何在10Wqps高并发场景下实现分布式事务。文章从传统单体架构到微服务架构下分布式事务的需求背景出发,介绍了Seata这一开源分布式事务解决方案及其AT和TCC两种模式。随后,文章深入探讨了经典ebay本地消息表方案,以及如何使用RocketMQ消息队列替代数据库表来提高性能和可靠性。尼恩还分享了如何结合延迟消息进行事务数据的定时对账,确保最终一致性。最后,尼恩强调了高端面试中需要准备“高大上”的答案,并提供了多个技术领域的深度学习资料,帮助读者提升技术水平,顺利通过面试。
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
|
1月前
|
缓存 关系型数据库 MySQL
高并发架构系列:数据库主从同步的 3 种方案
本文详解高并发场景下数据库主从同步的三种解决方案:数据主从同步、数据库半同步复制、数据库中间件同步和缓存记录写key同步,旨在帮助解决数据一致性问题。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
高并发架构系列:数据库主从同步的 3 种方案
|
6月前
|
消息中间件 数据挖掘 程序员
【建议收藏】高并发下的分布式事务:如何选择最优方案?
本文介绍了分布式事务的三种常见解决方案。在分布式系统中,事务处理变得复杂,需确保ACID特性。TCC(Try-Confirm-Cancel)方案适用于严格资金要求的场景,如银行转账,通过预留、确认和取消步骤确保一致性。可靠消息最终一致性方案适合一致性要求较低的场景,如电商积分处理,通过消息中间件实现最终一致性。最大努力通知方案则用于允许不一致的场景,如数据分析,通过重复通知尽可能达成一致性。选择合适的方案取决于具体应用场景。
185 5
|
3月前
|
消息中间件 存储 负载均衡
高并发流量杀手锏:揭秘秒杀系统背后的削峰技术!
本文介绍了秒杀场景下的“削峰填谷”策略,通过消息队列缓冲用户请求,避免高并发对系统造成冲击。文中详细解释了消息队列的工作原理及如何通过预扣减库存和分布式锁确保数据一致性,同时还提出了合理的消息队列配置、高可用性及数据库负载均衡等最佳实践。通过这些技术手段,可有效提升系统的稳定性和用户体验。
170 8
高并发流量杀手锏:揭秘秒杀系统背后的削峰技术!
|
4月前
|
缓存 监控 安全
揭秘高并发神话背后:打造坚不可摧的秒杀系统,技术大牛必修课!
【8月更文挑战第29天】在设计高并发、高可用的分布式秒杀系统时,需关注系统架构、数据库设计、缓存策略、并发控制、降级限流及安全防护。采用微服务架构并通过API网关和负载均衡器通信;数据库设计需考虑分库分表与读写分离;利用Redis缓存热点数据;采用限流算法和排队机制控制并发;实施IP限流和验证码验证保障安全。以下为简化代码示例,展示如何在秒杀服务中实现预扣减库存和订单创建逻辑。此外,还需进行性能测试与优化,并设置监控和日志记录机制,确保系统稳定可靠。
80 1
|
4月前
|
消息中间件 负载均衡 应用服务中间件
高并发环境下的Nginx整合方案
【8月更文挑战第20天】在高并发环境下,整合Nginx代理服务器、静态文件服务器、Tomcat集群、Mycat数据库读写分离和消息队列,可以构建一个强大、灵活且可扩展的Web服务架构。
59 1
|
4月前
|
Java Spring 开发者
Spring 框架配置属性绑定大比拼:@Value 与 @ConfigurationProperties,谁才是真正的王者?
【8月更文挑战第31天】Spring 框架提供 `@Value` 和 `@ConfigurationProperties` 两种配置属性绑定方式。`@Value` 简单直接,适用于简单场景,但处理复杂配置时略显不足。`@ConfigurationProperties` 则以类级别绑定配置,简化代码并更好组织配置信息。本文通过示例对比两者特点,帮助开发者根据具体需求选择合适的绑定方式,实现高效且易维护的配置管理。
69 0
|
4月前
|
存储 监控 固态存储
【性能突破】揭秘!如何让您的数据库在高并发风暴中稳如磐石——一场关于WAL写入性能优化的实战之旅,不容错过的技术盛宴!
【8月更文挑战第21天】在高并发环境下,数据库面临极大挑战,特别是采用Write-Ahead Logging (WAL)的日志机制。本文通过一个在线交易系统的案例,分析了WAL写入性能瓶颈,并提出优化方案:理解WAL流程;分析磁盘I/O瓶颈、缓冲区设置与同步策略;通过增大WAL缓冲区、使用SSD及调整同步策略来优化;最后通过测试验证改进效果,总结出一套综合优化方法。
78 0