Go语言之反射

简介:

和Java语言一样,Go也实现运行时反射,这为我们提供一种可以在运行时操作任意类型对象的能力。比如我们可以查看一个接口变量的具体类型,看看一个结构体有多少字段,如何修改某个字段的值等。


TypeOf和ValueOf


在Go的反射定义中,任何接口都会由两部分组成的,一个是接口的具体类型,一个是具体类型对应的值。比如var i int = 3 ,因为interface{}可以表示任何类型,所以变量i可以转为interface{},所以可以把变量i当成一个接口,那么这个变量在Go反射中的表示就是<Value,Type>,其中Value为变量的值3,Type变量的为类型int


在Go反射中,标准库为我们提供两种类型来分别表示他们reflect.Valuereflect.Type,并且提供了两个函数来获取任意对象的ValueType


func main() {
    u:= User{"张三",20}
    t:=reflect.TypeOf(u)
    fmt.Println(t)
}
type User struct{    Name string    Age int
}


reflect.TypeOf可以获取任意对象的具体类型,这里通过打印输出可以看到是main.User这个结构体型。reflect.TypeOf函数接受一个空接口interface{}作为参数,所以这个方法可以接受任何类型的对象。


接着上面的例子,我们看下如何反射获取一个对象的Value


 v:=reflect.ValueOf(u)
    fmt.Println(v)


TypeOf函数一样,也可以接受任意对象,可以看到打印输出为{张三 20}。对于以上这两种输出,Go语言还通过fmt.Printf函数为我们提供了简便的方法。


    fmt.Printf("%T\n",u)
    fmt.Printf("%v\n",u)


这个例子和以上的例子中的输出一样。


reflect.Value转原始类型


上面的例子我们可以通过reflect.ValueOf函数把任意类型的对象转为一个reflect.Value,那我们如果我们想逆向转过回来呢,其实也是可以的,reflect.Value为我们提供了Inteface方法来帮我们做这个事情。继续接上面的例子:


    u1:=v.Interface().(User)
    fmt.Println(u1)


这样我们就又还原为原来的User对象了,通过打印的输出就可以验证。这里可以还原的原因是因为在Go的反射中,把任意一个对象分为reflect.Valuereflect.Type,而reflect.Value又同时持有一个对象的reflect.Valuereflect.Type,所以我们可以通过reflect.ValueInterface方法实现还原。现在我们看看如何从一个reflect.Value获取对应的reflect.Type



  t1:=v.Type()
    fmt.Println(t1)


如上例中,通过reflect.ValueType方法就可以获得对应的reflect.Type


获取类型底层类型


底层的类型是什么意思呢?其实对应的主要是基础类型,接口、结构体、指针这些,因为我们可以通过type关键字声明很多新的类型,比如上面的例子,对象u的实际类型是User,但是对应的底层类型是struct这个结构体类型,我们来验证下。


fmt.Println(t.Kind())


通过Kind方法即可获取,非常简单,当然我们也可以使用Value对象的Kind方法,他们是等价的。


Go语言提供了以下这些最底层的类型,可以看到,都是最基本的。


const (
    Invalid Kind = iota    
   Bool    Int    Int8    Int16    Int32    Int64    Uint    Uint8    Uint16    Uint32    Uint64    Uintptr    Float32    Float64    Complex64    Complex128    Array    Chan    Func    Interface    Map    Ptr    Slice    String    Struct    UnsafePointer
)


遍历字段和方法


通过反射,我们可以获取一个结构体类型的字段,也可以获取一个类型的导出方法,这样我们就可以在运行时了解一个类型的结构,这是一个非常强大的功能。



for i:=0;i<t.NumField();i++ {
        fmt.Println(t.Field(i).Name)
    }    
    for i:=0;i<t.NumMethod() ;i++  {
        fmt.Println(t.Method(i).Name)
    }


这个例子打印出结构体的所有字段名以及该结构体的方法。NumField方法获取结构体有多少个字段,然后通过Field方法传递索引的方式,循环获取每一个字段,然后打印出他们的名字。


同样的对于方法也类似,这里不再赘述。


修改字段的值


假如我们想在运行中动态的修改某个字段的值有什么办法呢?一种就是我们常规的有提供的方法或者导出的字段可以供我们修改,还有一种是使用反射,这里主要介绍反射。


func main() {
    x:=2
    v:=reflect.ValueOf(&x)
    v.Elem().SetInt(100)
    fmt.Println(x)
}


以上就是通过反射修改一个变量的例子。


因为reflect.ValueOf函数返回的是一份值的拷贝,所以前提是我们是传入要修改变量的地址。


其次需要我们调用
Elem方法找到这个指针指向的值。


最后我们就可以使用
SetInt方法修改值了。


以上有几个重点,才可以保证值可以被修改,Value为我们提供了CanSet方法可以帮助我们判断是否可以修改该对象。


我们现在可以更新变量的值了,那么如何修改结构体字段的值呢?大家自己试试。


动态调用方法


结构体的方法我们不光可以正常的调用,还可以使用反射进行调用。要想反射调用,我们先要获取到需要调用的方法,然后进行传参调用,如下示例:


func main() {
    u:=User{"张三",20}
    v:=reflect.ValueOf(u)

    mPrint:=v.MethodByName("Print")
    args:=[]reflect.Value{reflect.ValueOf("前缀")}
    fmt.Println(mPrint.Call(args))
}
type User struct{    Name string    Age int
}
func (u User) Print(prfix string){    fmt.Printf("%s:Name is %s,Age is %d",prfix,u.Name,u.Age)
}


MethodByName方法可以让我们根据一个方法名获取一个方法对象,然后我们构建好该方法需要的参数,最后调用Call就达到了动态调用方法的目的。


获取到的方法我们可以使用IsValid 来判断是否可用(存在)。


这里的参数是一个Value类型的数组,所以需要的参数,我们必须要通过ValueOf函数进行转换。




本文转自 baby神 51CTO博客,原文链接:http://blog.51cto.com/babyshen/2044187,如需转载请自行联系原作者
相关文章
|
8天前
|
JSON 中间件 Go
go语言后端开发学习(四) —— 在go项目中使用Zap日志库
本文详细介绍了如何在Go项目中集成并配置Zap日志库。首先通过`go get -u go.uber.org/zap`命令安装Zap,接着展示了`Logger`与`Sugared Logger`两种日志记录器的基本用法。随后深入探讨了Zap的高级配置,包括如何将日志输出至文件、调整时间格式、记录调用者信息以及日志分割等。最后,文章演示了如何在gin框架中集成Zap,通过自定义中间件实现了日志记录和异常恢复功能。通过这些步骤,读者可以掌握Zap在实际项目中的应用与定制方法
go语言后端开发学习(四) —— 在go项目中使用Zap日志库
|
1天前
|
安全 Java Go
探索Go语言在高并发环境中的优势
在当今的技术环境中,高并发处理能力成为评估编程语言性能的关键因素之一。Go语言(Golang),作为Google开发的一种编程语言,以其独特的并发处理模型和高效的性能赢得了广泛关注。本文将深入探讨Go语言在高并发环境中的优势,尤其是其goroutine和channel机制如何简化并发编程,提升系统的响应速度和稳定性。通过具体的案例分析和性能对比,本文揭示了Go语言在实际应用中的高效性,并为开发者在选择合适技术栈时提供参考。
|
5天前
|
JSON 人工智能 Go
go 反射的常见用法
go 反射的常见用法
15 4
|
5天前
|
运维 Kubernetes Go
"解锁K8s二开新姿势!client-go:你不可不知的Go语言神器,让Kubernetes集群管理如虎添翼,秒变运维大神!"
【8月更文挑战第14天】随着云原生技术的发展,Kubernetes (K8s) 成为容器编排的首选。client-go作为K8s的官方Go语言客户端库,通过封装RESTful API,使开发者能便捷地管理集群资源,如Pods和服务。本文介绍client-go基本概念、使用方法及自定义操作。涵盖ClientSet、DynamicClient等客户端实现,以及lister、informer等组件,通过示例展示如何列出集群中的所有Pods。client-go的强大功能助力高效开发和运维。
24 1
|
6天前
|
SQL 关系型数据库 MySQL
Go语言中使用 sqlx 来操作 MySQL
Go语言因其高效的性能和简洁的语法而受到开发者们的欢迎。在开发过程中,数据库操作不可或缺。虽然Go的标准库提供了`database/sql`包支持数据库操作,但使用起来稍显复杂。为此,`sqlx`应运而生,作为`database/sql`的扩展库,它简化了许多常见的数据库任务。本文介绍如何使用`sqlx`包操作MySQL数据库,包括安装所需的包、连接数据库、创建表、插入/查询/更新/删除数据等操作,并展示了如何利用命名参数来进一步简化代码。通过`sqlx`,开发者可以更加高效且简洁地完成数据库交互任务。
13 1
|
11天前
|
XML JSON Go
微服务架构下的配置管理:Go 语言与 yaml 的完美结合
微服务架构下的配置管理:Go 语言与 yaml 的完美结合
|
6天前
|
算法 NoSQL 中间件
go语言后端开发学习(六) ——基于雪花算法生成用户ID
本文介绍了分布式ID生成中的Snowflake(雪花)算法。为解决用户ID安全性与唯一性问题,Snowflake算法生成的ID具备全局唯一性、递增性、高可用性和高性能性等特点。64位ID由符号位(固定为0)、41位时间戳、10位标识位(含数据中心与机器ID)及12位序列号组成。面对ID重复风险,可通过预分配、动态或统一分配标识位解决。Go语言实现示例展示了如何使用第三方包`sonyflake`生成ID,确保不同节点产生的ID始终唯一。
go语言后端开发学习(六) ——基于雪花算法生成用户ID
|
7天前
|
JSON 缓存 监控
go语言后端开发学习(五)——如何在项目中使用Viper来配置环境
Viper 是一个强大的 Go 语言配置管理库,适用于各类应用,包括 Twelve-Factor Apps。相比仅支持 `.ini` 格式的 `go-ini`,Viper 支持更多配置格式如 JSON、TOML、YAML
go语言后端开发学习(五)——如何在项目中使用Viper来配置环境
|
8天前
|
安全 Go API
go语言中的Atomic操作与sema锁
在并发编程中,确保数据一致性和程序正确性是关键挑战。Go语言通过协程和通道提供强大支持,但在需精细控制资源访问时,Atomic操作和sema锁变得至关重要。Atomic操作确保多协程环境下对共享资源的访问是不可分割的,如`sync/atomic`包中的`AddInt32`等函数,底层利用硬件锁机制实现。sema锁(信号量锁)控制并发协程数量,其核心是一个uint32值,当大于零时通过CAS操作实现锁的获取与释放;当为零时,sema锁管理协程休眠队列。这两种机制共同保障了Go语言并发环境下的数据完整性和程序稳定性。
|
9天前
|
算法 Go
Go 语言 实现冒泡排序
冒泡排序是大家熟知的经典算法。在Go语言中实现它,关键在于理解其核心思想:通过不断比较并交换相邻元素,让序列中的最大值像泡泡一样“浮”至顶端。每一轮比较都能确定一个最大值的位置。外层循环控制排序轮数,内层循环负责比较与交换。随着每轮排序完成,未排序部分逐渐缩小,直至整个数组有序。以下是Go语言实现示例及说明。
17 1