数据结构和算法14 之归并排序

简介:

  归并算法的中心是归并两个已经有序的数组。归并两个有序数组A和B,就生成了第三个数组C,数组C包含数组A和B的所有数据项,并且使它们有序的排列在数组C中。首先我们来看看归并的过程,然后看它是如何在排序中使用的。

        假设有两个有序数组,不要求有相同的大小。设数组A有4个数据项,数组B有6个数据项,它们要被归并到数组C中,开始时数组C有10个存储空间,归并过程如下图所示:


        归并排序的思想是把一个数组分成两半,排序每一半。然后用merge方法将数组的两半归并成一个有序的数组。被分的每一半使用递归,再次划分排序,直到得到的子数组只含有一个数据项为止。正如上面所说的,归并排序需要额外的一个和AB两个数组总和相等的空间,如果初始数组几乎沾满了整个存储器,那么归并排序就不能工作了。

        归并排序的思想很简单,下面我们来看看具体实现:

[java]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. public void mergeSort(int[] source) {  
  2.     int[] workSpace = new int[source.length];  
  3.     recMergeSort(source,workSpace, 0, source.length-1);  
  4. }  
  5.   
  6. private void recMergeSort(int[] source, int[] workSpace, int lowerBound, int upperBound) {  
  7.     if(lowerBound == upperBound) {  
  8.         return;  
  9.     }  
  10.     else {  
  11.         int mid = (lowerBound + upperBound) / 2;  
  12.         recMergeSort(source, workSpace, lowerBound, mid); //左边排  
  13.         recMergeSort(source, workSpace, mid+1, upperBound); //右边排  
  14.         merge(source, workSpace, lowerBound, mid+1, upperBound);//归并  
  15.     }  
  16. }  
  17.   
  18. private void merge(int[] a, int[] workSpace, int lowPtr, int highPtr, int upperBound) {  
  19.     int j = 0;  
  20.     int lowerBound = lowPtr;  
  21.     int mid = highPtr - 1;  
  22.     int n = upperBound - lowerBound + 1;  
  23.     while(lowPtr <= mid && highPtr <= upperBound) {  
  24.         if(a[lowPtr] < a[highPtr]) {  
  25.             workSpace[j++] = a[lowPtr++];  
  26.         }  
  27.         else {  
  28.             workSpace[j++] = a[highPtr++];  
  29.         }  
  30.     }  
  31.     while(lowPtr <= mid) {  
  32.         workSpace[j++] = a[lowPtr++];  
  33.     }  
  34.       
  35.     while(highPtr <= upperBound) {  
  36.         workSpace[j++] = a[highPtr++];  
  37.     }  
  38.       
  39.     for(j = 0; j < n; j++) {  
  40.         a[lowerBound + j] = workSpace[j];  
  41.     }  
  42. }  

        算法分析:归并排序的运行时间最差、最好和平均都是O(NlogN),但是它需要额外的存储空间,这在某些内存紧张的机器上会受到限制。归并算法是由分割和归并两部分组成的,对于分各部分,如果我们使用二分查找,时间是O(NlogN),在最后归并的时候时间是O(N),所以总时间是O(NlogN)。空间复杂度为O(N)。

        归并排序是稳定的,由于没有发生数据交换,所有当a=b的时候,a一开始如果在b前面,则其每一次合并后仍然在b前面,故该排序算法是稳定的。

        归并排序就写这么多,如有错误之处,欢迎留言指正~


转载:http://blog.csdn.net/eson_15/article/details/51193139

目录
相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
49 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
117 4
|
11天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
48 20
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
110 23
|
2月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
62 20
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
65 1
|
2月前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
58 0
|
2月前
|
算法 vr&ar 计算机视觉
数据结构之洪水填充算法(DFS)
洪水填充算法是一种基于深度优先搜索(DFS)的图像处理技术,主要用于区域填充和图像分割。通过递归或栈的方式探索图像中的连通区域并进行颜色替换。本文介绍了算法的基本原理、数据结构设计(如链表和栈)、核心代码实现及应用实例,展示了算法在图像编辑等领域的高效性和灵活性。同时,文中也讨论了算法的优缺点,如实现简单但可能存在堆栈溢出的风险等。
59 0