深度学习技术在网络入侵检测中的应用

本文涉及的产品
云防火墙,500元 1000GB
简介:
案例简介
• 本案例中,北京邮电大学移动互联网安全技术国家工程实验室研究团队致力于将最新的深度学习技术应用于网络入侵检测,积极探索利用人工智能解决网络安全问题的新思路。
• 本案例中使用的NVIDIA GPU:10块 Tesla K80。
Case Introduction
• In this case, the research team belongs to the National Engineering Laboratory for Mobile Network Security Technologies, Beijing University of Posts and Telecommunications. They devote to applying the latest deep learning technology to network intrusion detection, and actively exploring new ideas of using artificial intelligence to solve cyber security problems.
• The major product utilized in the case is 10 NVIDIA Tesla K80 GPUs.
现状
从全球范围来看,网络空间安全形势不容乐观。继早期的蠕虫病毒、特洛伊木马和僵尸网络之后,近年来又兴起了被称为APT(高级持续威胁)的新型网络攻击手段。2017年上半年,勒索病毒WannaCry更是在全球范围内肆虐,通过网络造成一场严重的灾难。最新统计数据显示,WannaCry勒索病毒至少感染了150个国家的30万台电脑,波及了众多行业,包括金融、能源、医疗等,造成经济损失约达80亿美元,成为多年以来影响力最大的病毒之一。
简言之,不断爆发的大规模网络攻击一方面证明了传统安全防护技术的缺陷和不足,另一方面则呼唤着新一代网络安全技术的出现。笔者所在研究团队隶属于北京邮电大学移动互联网安全技术国家工程实验室,主要关注基于深度学习技术的网络入侵检测,在网络异常流量检测、基于载荷的Web攻击检测等方面开展研究工作。此外,团队也积极探索利用人工智能解决网络安全问题的新思路。
挑战
入侵检测技术最早在1980年提出,此后一直是网络安全领域的重点研究方向。传统入侵检测技术采用基于规则的方法,所谓规则是指恶意程序的签名和对恶意行为的描述,与规则相匹配的程序代码或网络行为会被检测为攻击。从实际应用情况来看,基于规则的入侵检测技术可以有效防御已知攻击方面,但对于新型未知攻击则素手无策。
鉴于此,诸多网络安全研究人员将关注点转移到基于异常的入侵检测技术。该检测技术主要采用统计机器学习的方法——收集正常的程序和网络行为数据,提取多维度特征,并在此基础上训练判决式机器学习模型(常用的包括朴素贝叶斯、决策树、支持向量机和随机森林等)。在检测阶段,与正常值之间的偏离超出容限的程序代码或网络行为会被认为是恶意代码或网络攻击行为。
与规则检测相比,基于异常的检测方法难以被绕过,在一定程度上提升了入侵检测的能力。然而实践表明,异常检测模型的优劣主要取决于特征提取。在已有研究中,特征提取工作主要都是由领域专家人工完成,使得该环节严重依赖于专家经验,而且缺乏在不同应用场景下的自适应性。
方案
由于深度神经网络有良好的数据表示和特征提取能力,笔者所在研究团队尝试在特征提取环节应用深度学习技术,替代人工专家的主观经验。团队主要从网络异常流量检测和基于载荷的Web攻击检测两方面展开研究。接下来简要介绍我们的研究工作。
 利用受限玻尔兹曼机和支持向量机进行网络异常流量检测
网络异常流量检测的总体流程如图1所示。相比传统方法,此工作的创新点是在分类器模型之前增加了特征抽取器。在实现时,分类器模型采用支持向量机,而特征抽取器则使用了受限玻尔兹曼机。

6 天前 上传

点击文件名下载附件

683.5 KB, 下载次数: 0


原文发布时间为:2018-2-28
原文由:emily 发布,版权归属于原作者 
本文来自云栖社区合作伙伴NVIDIA,了解相关信息可以关注NVIDIA官方网站
目录
相关文章
|
2月前
|
机器学习/深度学习 PyTorch TensorFlow
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
4月前
|
监控 安全 Shell
管道符在渗透测试与网络安全中的全面应用指南
管道符是渗透测试与网络安全中的关键工具,既可用于高效系统管理,也可能被攻击者利用实施命令注入、权限提升、数据外泄等攻击。本文全面解析管道符的基础原理、实战应用与防御策略,涵盖Windows与Linux系统差异、攻击技术示例及检测手段,帮助安全人员掌握其利用方式与防护措施,提升系统安全性。
194 6
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
王耀恒:从网络营销老兵到GEO技术布道者
在王耀恒看来,AI时代的技术竞争已从“信息不对称”转向“系统化应用能力”。他的GEO课程体系正是这一理念的体现——技术可以被复制,但深度实践验证的系统框架、认知升级路径和教学转化艺术却构成了难以逾越的壁垒。
|
6月前
|
机器学习/深度学习 人工智能 运维
网管不再抓头发:深度学习教你提前发现网络事故
网管不再抓头发:深度学习教你提前发现网络事故
149 2
|
2月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
3月前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
399 11
|
2月前
|
机器学习/深度学习 人工智能 监控
上海拔俗AI软件定制:让技术真正为你所用,拔俗网络这样做
在上海,企业正通过AI软件定制破解通用化难题。该模式以业务场景为核心,量身打造智能解决方案,涵盖场景化模型开发、模块化架构设计与数据闭环优化三大技术维度,推动技术与业务深度融合,助力企业实现高效、可持续的数字化转型。
|
5月前
|
机器学习/深度学习 人工智能 算法
Wi-Fi老是卡?不如试试让“深度学习”来当网络管家!
Wi-Fi老是卡?不如试试让“深度学习”来当网络管家!
278 68
|
3月前
|
监控 前端开发 安全
Netty 高性能网络编程框架技术详解与实践指南
本文档全面介绍 Netty 高性能网络编程框架的核心概念、架构设计和实践应用。作为 Java 领域最优秀的 NIO 框架之一,Netty 提供了异步事件驱动的网络应用程序框架,用于快速开发可维护的高性能协议服务器和客户端。本文将深入探讨其 Reactor 模型、ChannelPipeline、编解码器、内存管理等核心机制,帮助开发者构建高性能的网络应用系统。
229 0
|
4月前
|
数据采集 存储 数据可视化
Python网络爬虫在环境保护中的应用:污染源监测数据抓取与分析
在环保领域,数据是决策基础,但分散在多个平台,获取困难。Python网络爬虫技术灵活高效,可自动化抓取空气质量、水质、污染源等数据,实现多平台整合、实时更新、结构化存储与异常预警。本文详解爬虫实战应用,涵盖技术选型、代码实现、反爬策略与数据分析,助力环保数据高效利用。
254 0