高性能计算GPU解决方案系列教程二--高性能计算集群性能指标

简介:
本节课的内容对于很多不了解硬件指标的用户非常重要,超算用户是如何来评定自己集群的各方面能力呢?我们一起走进今天的课堂。

2 高性能计算集群性能指标
2.1 衡量高性能计算集群的评价指标
2.1.1.    理论峰值性能

FLOPS是指每秒浮点运算次数,Flops用作计算机计算能力的评价系数。根据硬件配置和参数可以计算出高性能计算集群的理论性能。

1)CPU理论性能计算方法(以Intel CPU为例)
      单精度:主频*(向量位宽/32)*2
      双精度:主频*(向量位宽/64)*2   2代表乘积指令
      
2)GPU理论性能计算方法(以NVIDIA GPU为例)
      单精度:指令吞吐率*运算单元数量*频率

2.1.2.    实测峰值性能

通过利用测试程序对系统进行整体计算能力进行评价。
Linapck测试:采用主元高斯消去法求解双精度稠密线性代数方程组,结果按每秒浮点运算次数(flops)表示。
HPL:针对大规模并行计算系统的测试,其名称为HighPerformanceLinpack(HPL),是第一个标准的公开版本并行Linpack测试软件包。
用于TOP500与国内TOP100排名依据。

2.1.3.    评价参数
    1) 系统效率=实测峰值/理论峰值
    2) 加速度 S=串行程序运行时间/并行程序运行时间
    3) Amdahl定律
        S =(WS+WP)/(WS+WP/p) =1/(1/p+f(1-1/p))
    4) Gustafson定律
        S =(WS+pwp)/(WS+WP) =p-f(p-1)=f+p(1-f)


原文发布时间为:2016-7-11 10:46:05
原文由:十四王爷 发布,版权归属于原作者 
本文来自云栖社区合作伙伴NVIDIA,了解相关信息可以关注NVIDIA官方网站
相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
目录
相关文章
|
并行计算 Linux 测试技术
GPU实例使用--单实例上运行Linux桌面多开解决方案
客户前期使用的旧异构实例面临更新换代,新的推荐异构实例性能更强,客户的业务软件运行时,GPU使用率不高,需要探索多开方案,提高GPU使用率,提高实例性价比。
|
2月前
|
人工智能 算法 调度
阿里云ACK托管集群Pro版共享GPU调度操作指南
本文介绍在阿里云ACK托管集群Pro版中,如何通过共享GPU调度实现显存与算力的精细化分配,涵盖前提条件、使用限制、节点池配置及任务部署全流程,提升GPU资源利用率,适用于AI训练与推理场景。
249 1
|
3月前
|
运维 NoSQL 调度
GPU集群扩展:Ray Serve与Celery的技术选型与应用场景分析
Ray Serve与Celery对比:Ray Serve适用于低延迟、高并发的GPU推理服务,支持资源感知调度;Celery适合CPU密集型的离线批处理,具备成熟的任务队列机制。两者设计理念不同,适用场景各异,可根据任务类型灵活选型。
135 6
GPU集群扩展:Ray Serve与Celery的技术选型与应用场景分析
|
2月前
|
弹性计算 监控 调度
ACK One 注册集群云端节点池升级:IDC 集群一键接入云端 GPU 算力,接入效率提升 80%
ACK One注册集群节点池实现“一键接入”,免去手动编写脚本与GPU驱动安装,支持自动扩缩容与多场景调度,大幅提升K8s集群管理效率。
228 89
|
2月前
|
Kubernetes 调度 异构计算
Kubernetes集群中,部分使用GPU资源的Pod出现UnexpectedAdmissionError问题的解决方案。
如果在进行上述检查之后,问题依然存在,可以尝试创建一个最小化的Pod配置,仅请求GPU资源而不
149 5
|
8月前
|
机器学习/深度学习 并行计算 PyTorch
英伟达新一代GPU架构(50系列显卡)PyTorch兼容性解决方案
本文记录了在RTX 5070 Ti上运行PyTorch时遇到的CUDA兼容性问题,分析其根源为预编译二进制文件不支持sm_120架构,并提出解决方案:使用PyTorch Nightly版本、更新CUDA工具包至12.8。通过清理环境并安装支持新架构的组件,成功解决兼容性问题。文章总结了深度学习环境中硬件与框架兼容性的关键策略,强调Nightly构建版本和环境一致性的重要性,为开发者提供参考。
3993 64
英伟达新一代GPU架构(50系列显卡)PyTorch兼容性解决方案
|
10月前
|
人工智能 Linux iOS开发
exo:22.1K Star!一个能让任何人利用日常设备构建AI集群的强大工具,组成一个虚拟GPU在多台设备上并行运行模型
exo 是一款由 exo labs 维护的开源项目,能够让你利用家中的日常设备(如 iPhone、iPad、Android、Mac 和 Linux)构建强大的 AI 集群,支持多种大模型和分布式推理。
2197 101
|
9月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
720 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
|
11月前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置,包括CPU+GPU、FPGA等,适用于人工智能、机器学习和深度学习等计算密集型任务。本文整理了阿里云GPU服务器的优惠价格,涵盖NVIDIA A10、V100、T4等型号,提供1个月、1年和1小时的收费明细。具体规格如A10卡GN7i、V100-16G卡GN6v等,适用于不同业务场景,详情见官方页面。
1067 11
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器架构有啥区别?X86计算、Arm、GPU异构、裸金属和高性能计算对比
阿里云ECS涵盖x86、ARM、GPU/FPGA/ASIC、弹性裸金属及高性能计算等多种架构。x86架构采用Intel/AMD处理器,适用于广泛企业级应用;ARM架构低功耗,适合容器与微服务;GPU/FPGA/ASIC专为AI、图形处理设计;弹性裸金属提供物理机性能;高性能计算则针对大规模并行计算优化。
840 7

热门文章

最新文章