高性能计算GPU解决方案系列课程四--计算节点

简介:
4 .      计算节点

计算节点是高性能集群中的最主要的计算能力的体现,目前,主流的计算节点有同构节点和异构节点两种类型。

4.1.   构计算节点
同构计算节点是指集群中每个计算节点完全有CPU计算资源组成,目前,在一个计算节点上可以支持单路、双路、四路、八路等CPU计算节点。

Intel和AMD CPU型号、参数详见 http://www.techpowerup.com/cpudb

4.2.   异构计算节点
异构计算技术从80年代中期产生,由于它能经济有效地获取高性能计算能力、可扩展性好、计算资源利用率高、发展潜力巨大,目前已成为并行/分布计算领域中的研究热点之一。异构计算的目的一般是加速和节能。

目前,主流的异构计算有:CPU+GPUCPU+MICCPU+FPGA

4.2.1.   CPU+GPU异构计算
在CPU+GPU异构计算中,用CPU进行复杂逻辑和事务处理等串行计算,用 GPU 完成大规模并行计算,即可以各尽其能,充分发挥计算系统的处理能力。由于CPU+GPU异构系统上,每个节点CPU的核数也比较多,也具有一定的计算能力,因此,CPU除了做一些复杂逻辑和事务处理等串行计算,也可以与GPU一起做一部分并行计算,做到真正的CPU+GPU异构协同计算。

目前,主流的GPU产品来自于NVIDIA。

原文发布时间为:2016-7-11 13:33:23
原文由:十四王爷 发布,版权归属于原作者 
本文来自云栖社区合作伙伴NVIDIA,了解相关信息可以关注NVIDIA官方网站
相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
目录
相关文章
|
2月前
|
人工智能 并行计算 PyTorch
以Lama Cleaner的AI去水印工具理解人工智能中经常会用到GPU来计算的CUDA是什么? 优雅草-卓伊凡
以Lama Cleaner的AI去水印工具理解人工智能中经常会用到GPU来计算的CUDA是什么? 优雅草-卓伊凡
225 4
|
2月前
|
机器学习/深度学习 人工智能 芯片
42_大语言模型的计算需求:从GPU到TPU
随着2025年大语言模型技术的持续突破和规模化应用,计算资源已成为推动AI发展的关键驱动力。从最初的CPU计算,到GPU加速,再到专用AI加速器的崛起,大语言模型的计算需求正在重塑全球数据中心的基础设施架构。当前,全球AI半导体市场规模预计在2027年将达到2380亿美元(基本情境)甚至4050亿美元(乐观情境),这一增长背后,是大语言模型对计算能力、内存带宽和能效比的极致追求。
|
3月前
|
机器学习/深度学习 人工智能 容灾
硅谷GPU云托管:驱动AI革命的下一代计算基石
在人工智能与高性能计算席卷全球的今天,硅谷作为科技创新的心脏,正通过GPU云托管服务重新定义计算能力的边界。无论您是初创公司的机器学习工程师,还是跨国企业的研究团队,硅谷GPU云托管已成为实现突破性创新的关键基础设施。
|
9月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
720 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
|
10月前
|
边缘计算 Prometheus 监控
边缘GPU节点的可观测原理和最佳实践
介绍ACK Edge接入的边缘GPU节点的可观测原理和最佳实践。
|
11月前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置,包括CPU+GPU、FPGA等,适用于人工智能、机器学习和深度学习等计算密集型任务。本文整理了阿里云GPU服务器的优惠价格,涵盖NVIDIA A10、V100、T4等型号,提供1个月、1年和1小时的收费明细。具体规格如A10卡GN7i、V100-16G卡GN6v等,适用于不同业务场景,详情见官方页面。
1067 11
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器架构有啥区别?X86计算、Arm、GPU异构、裸金属和高性能计算对比
阿里云ECS涵盖x86、ARM、GPU/FPGA/ASIC、弹性裸金属及高性能计算等多种架构。x86架构采用Intel/AMD处理器,适用于广泛企业级应用;ARM架构低功耗,适合容器与微服务;GPU/FPGA/ASIC专为AI、图形处理设计;弹性裸金属提供物理机性能;高性能计算则针对大规模并行计算优化。
840 7
|
机器学习/深度学习 并行计算 算法
GPU加速与代码性能优化:挖掘计算潜力的深度探索
【10月更文挑战第20天】GPU加速与代码性能优化:挖掘计算潜力的深度探索
|
机器学习/深度学习 人工智能 数据挖掘
GPU加速:解锁高性能计算的未来
【10月更文挑战第20天】GPU加速:解锁高性能计算的未来
956 1
|
机器学习/深度学习 弹性计算 编解码
阿里云服务器计算架构X86/ARM/GPU/FPGA/ASIC/裸金属/超级计算集群有啥区别?
阿里云服务器ECS提供了多种计算架构,包括X86、ARM、GPU/FPGA/ASIC、弹性裸金属服务器及超级计算集群。X86架构常见且通用,适合大多数应用场景;ARM架构具备低功耗优势,适用于长期运行环境;GPU/FPGA/ASIC则针对深度学习、科学计算、视频处理等高性能需求;弹性裸金属服务器与超级计算集群则分别提供物理机级别的性能和高速RDMA互联,满足高性能计算和大规模训练需求。
540 6

热门文章

最新文章