Hadoop MapReduce(FlowCount) Java编程

简介:

编写PhoneFlow程序,计算手机上行流量、下行流量以及总流量,数据如下:

 13685295623 122  201 

 13985295600 102  11 

 13885295622 22   101 

 13785295633 120  20 

1、FlowMapper:

package com.hadoop.flow;


import java.io.IOException;


import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.commons.lang.StringUtils;



public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean>{

/**

 * 数据格式:

 * 13685295623 122  201 

 * 13985295600 102  11 

 * 13885295622 22   101 

 * 13785295633 120  20 

 */

@Override

protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException {

String line=value.toString();

String [] fields=StringUtils.split(line,"\t");

String phoneNB=fields[0];

long up_flow=Long.valueOf(fields[1]);

long d_flow=Long.valueOf(fields[2]);

context.write(new Text(phoneNB), new FlowBean(phoneNB,up_flow,d_flow));

}


}

2、FlowReducer:

package com.hadoop.flow;


import java.io.IOException;


import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;


public class FlowReducer extends Reducer<Text, FlowBean,Text, FlowBean> {

@Override

protected void reduce(Text key, Iterable<FlowBean> values,Context context) throws IOException, InterruptedException {

long upflowC=0;

long dflowD=0;

for(FlowBean bean:values){

upflowC+=bean.getUp_flow();

dflowD+=bean.getD_flow();

}

context.write(key,new FlowBean(key.toString(),upflowC,dflowD));

}


}


3、FlowRunner 

package com.hadoop.flow;


import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.conf.Configured;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.util.Tool;

import org.apache.hadoop.util.ToolRunner;

import org.apache.hadoop.io.Text;


public class FlowRunner extends Configured implements Tool{

public int run(String[] args) throws Exception {

Configuration conf=new Configuration();

Job job=Job.getInstance(conf);

job.setJarByClass(FlowRunner.class);

job.setMapperClass(FlowMapper.class);

job.setReducerClass(FlowReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(FlowBean.class);

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(FlowBean.class);

FileInputFormat.setInputPaths(job,new Path(args[0]));

FileOutputFormat.setOutputPath(job,new Path(args[1]));

return job.waitForCompletion(true)?0:1;

}

public static void main(String[] args) throws Exception {

ToolRunner.run(new Configuration(), new FlowRunner(), args);

}


}


4、FlowBean :

package com.hadoop.flow;


import java.io.DataInput;

import java.io.DataOutput;

import java.io.IOException;


import org.apache.hadoop.io.Writable;


public class FlowBean implements Writable{

private String phoneNB;

private long up_flow;

private long d_flow;

private long s_flow;

public FlowBean(){

}

public FlowBean (String phoneNB,long up_flow,long d_flow){

this.phoneNB=phoneNB;

this.up_flow=up_flow;

this.d_flow=d_flow;

this.s_flow=up_flow+d_flow;

}

public String getPhoneNB() {

return phoneNB;

}


public void setPhoneNB(String phoneNB) {

this.phoneNB = phoneNB;

}


public long getUp_flow() {

return up_flow;

}


public void setUp_flow(long up_flow) {

this.up_flow = up_flow;

}


public long getD_flow() {

return d_flow;

}


public void setD_flow(long d_flow) {

this.d_flow = d_flow;

}


public long getS_flow() {

return s_flow;

}


public void setS_flow(long s_flow) {

this.s_flow = s_flow;

}

//

public void write(DataOutput out) throws IOException {

out.writeUTF(phoneNB);

out.writeLong(up_flow);

out.writeLong(d_flow);

out.writeLong(s_flow);

}

public void readFields(DataInput in) throws IOException {

phoneNB= in.readUTF();

up_flow=in.readLong();

d_flow=in.readLong();

s_flow=in.readLong();

}

@Override

public String toString() {

return up_flow+"   "+d_flow+"   "+"   "+s_flow;

}

}










本文转自lzf0530377451CTO博客,原文链接:http://blog.51cto.com/8757576/1839299 ,如需转载请自行联系原作者





相关文章
|
2月前
|
Java 开发者
Java多线程编程中的常见误区与最佳实践####
本文深入剖析了Java多线程编程中开发者常遇到的几个典型误区,如对`start()`与`run()`方法的混淆使用、忽视线程安全问题、错误处理未同步的共享变量等,并针对这些问题提出了具体的解决方案和最佳实践。通过实例代码对比,直观展示了正确与错误的实现方式,旨在帮助读者构建更加健壮、高效的多线程应用程序。 ####
|
1月前
|
Java 程序员
Java编程中的异常处理:从基础到高级
在Java的世界中,异常处理是代码健壮性的守护神。本文将带你从异常的基本概念出发,逐步深入到高级用法,探索如何优雅地处理程序中的错误和异常情况。通过实际案例,我们将一起学习如何编写更可靠、更易于维护的Java代码。准备好了吗?让我们一起踏上这段旅程,解锁Java异常处理的秘密!
|
19天前
|
存储 缓存 Java
Java 并发编程——volatile 关键字解析
本文介绍了Java线程中的`volatile`关键字及其与`synchronized`锁的区别。`volatile`保证了变量的可见性和一定的有序性,但不能保证原子性。它通过内存屏障实现,避免指令重排序,确保线程间数据一致。相比`synchronized`,`volatile`性能更优,适用于简单状态标记和某些特定场景,如单例模式中的双重检查锁定。文中还解释了Java内存模型的基本概念,包括主内存、工作内存及并发编程中的原子性、可见性和有序性。
Java 并发编程——volatile 关键字解析
|
23天前
|
算法 Java 调度
java并发编程中Monitor里的waitSet和EntryList都是做什么的
在Java并发编程中,Monitor内部包含两个重要队列:等待集(Wait Set)和入口列表(Entry List)。Wait Set用于线程的条件等待和协作,线程调用`wait()`后进入此集合,通过`notify()`或`notifyAll()`唤醒。Entry List则管理锁的竞争,未能获取锁的线程在此排队,等待锁释放后重新竞争。理解两者区别有助于设计高效的多线程程序。 - **Wait Set**:线程调用`wait()`后进入,等待条件满足被唤醒,需重新竞争锁。 - **Entry List**:多个线程竞争锁时,未获锁的线程在此排队,等待锁释放后获取锁继续执行。
61 12
|
19天前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
105 2
|
2月前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####
|
2月前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####
|
1月前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
1月前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
55 3
|
1月前
|
数据采集 分布式计算 Hadoop
使用Hadoop MapReduce进行大规模数据爬取
使用Hadoop MapReduce进行大规模数据爬取