使用TensorFlow,GPU和Docker容器进行深度学习

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 数据科学家使用GPU来提高TensorFlow的计算速度,但GPU价格昂贵,也需要对其所占用的资源进行认真的管理。本文将带你来一起解决这一问题。

在过去的几个月中,我和多个企业的数据科学团队进行了多次合作,也看到越来越多的机器学习和深度学习框架被广泛应用到实际生活中。

与大数据分析和数据科学中的其他用例一样,这些团队希望在BlueData EPIC软件平台上的Docker容器中运行他们最喜欢的深度学习框架和工具。因此,我的一部分工作就是尝试使用这些新工具,确保在我们的平台上能够运行,并且能够帮助这些团队开发出可以解决一些问题的新的功能。

TensorFlow是深度学习和机器学习最流行的开源框架之一。TensorFlow最初是由Google研究团队开发的并致力于解决深度神经网络的机器学习研究。另外,TensorFlow也适用于许多其他应用场景:图像识别,自由文本数据的自然语言处理以及威胁检测和监视等。

TensorFlow是一个用于对一系列任务进行机器学习的开源软件库,它是一个构建和训练神经网络来检测、解读模式和相关性的系统,它与人类学习和推理相似(但不一样)。”——维基百科

TensorFlow可以在各种异构系统(包括CPUGPU)上对计算资源进行合理分配。与我合作过的几个数据科学团队使用GPU来提高TensorFlow的计算速度,但GPU价格昂贵,他们需要对TensorFlow所占用的资源进行认真的管理

部署TensorFlow的注意事项

以下是部署数据科学应用程序和TensorFlow时的一些注意事项(尤其是在企业大规模部署时更应该注意):

1.如何对部署的复杂性进行管理,例如在OS,内核库和TensorFlow不同版本之间进行部署。

2.如何在作业期间支持创建临时集群。

3.如何隔离正在使用的资源并阻止同时队同一资源的访问请求。

4.如何在共享的多租户环境中对GPUCPU资源进行管理和分配。

BlueData EPIC软件平台就可以解决这些问题,它能够按照数据科学团队的需要访问各种不同的大数据分析、数据科学、机器学习和深度学习工具。在一个灵活、弹性和安全的多租户架构中使用Docker容器,BDaaSBig-Data-as-a-Service)软件平台可以支持大规模分布式数据科学和深度学习用例。

BlueData的最新版本可以支持启动采用GPU加速的集群,并且支持TensorFlowGPUIntel架构的CPU上进行深度学习。数据科学家可以在BlueData EPIC软件平台上启动即时TensorFlow集群在Docker容器上进行深度学习。BlueData支持在Intel Xeon硬件和Intel MKL上运行基于CPUTensorFlow,也支持采用NVIDIA CUDA库、CUDA扩展以及用于Docker容器的字符设备映射的基于GPUTensorFlow

BlueData EPIC软件平台可以为TensorFlow提供自助服务、弹性和安全环境,无论是在本地、公共云还是在二者的混合结构中都拥有同样的界面,不管其底层架构多么不同,用户都会有相同的用户体验。

如下图所示,用户可以像用于其他大数据分析、数据科学和机器学习环境一样,能够很容易地将带有BigDL的即时TensorFlow集群在BlueData软件平台上进行深度学习。并且,用户可以指定在TensorFlow运行的Docker容器放置在有GPU还是CPU配置的基础架构,以及在公共云还是在本地。

2ef860179a07986d0e3d0889092c9470ec13c7f6 

按需创建TensorFlow集群

BlueData EPIC软件平台上,用户只需点击几下鼠标即可根据自己的需求创建TensorFlow群集。BlueData的最新版本引入主机标签,用户可以创建具有主机标记的基于GPUCPUTensorFlow集群,这些主机标记为特定工作负载指定所需要的硬件,如下图所示。

6dd552a4cced89508d596c51aa2bdf640d832562

一旦创建完成,TensorFlow集群将拥有一个或多个Docker容器节点,这些Docker容器使用TensorFlow软件和相应的GPU/CPU加速库进行部署。例如,基于GPUTensorFlow群集将在Docker容器内具有NVIDIA CUDACUDA扩展;而基于CPUTensorFlow群集则在Docker容器中具有Intel MKLJupyter Notebook扩展。

高效的GPU资源管理

GPU和特定的CPU通常不会作为Docker容器的独立资源。BlueData EPIC软件平台通过在所有主机上管理GPU的共享池并在群集创建期间将GPU所请求的数量分配给群集来处理此问题。这种排他性(或隔离性)保证了对深度学习作业的服务质量,并防止多个处理作业尝试同时访问同一资源。

对于今天的大多数企业来说,GPU是一种需要有效利用的高端资源。当一个集群没有在使用或完成一项作业时,BlueData EPIC软件平台可以停止该集群使用并将GPU分配给其他正在使用的集群。 这允许用户在不同的租户环境中创建多个集群,并且仅仅在集群需要时才使用GPU,而不需要删除或重新创建群集群。还有一种机制,即在作业期间创建一个群集作为暂时性集群。

提高用户生产力

一旦TensorFlow集群创建完成,用户可以使用AD / LDAP控制的SSH启用容器并保护Jupyter Notebook

为了进行验证和测试,TensorFlow集群默认包含Jupyter Notebook,用例如下图所示。

d5a42ece222be19abe5d3dbeb459f20eafe25fcc

上图来自于GitHub回购。这些源码和教程可供用户使用,并可以立即投入应用中去。

BlueData EPIC软件平台上使用TensorFlow库和图表绘制的MNIST数据集的输入数字图像的重建示例如下图所示。

297d802aa7e385d557086c3fd567ad6726224fd9

根据输入图像和模型(使用TensorFlow GradientDescentOptimizer训练)提取数据集和模型预测如下图所示:

f9ae261457186d559797cd2947cc276b82a0163b

对输入图像和输出预测结果的对比如下图所示:

36db230163666fd77b0873d9ee08667b645c9b98

对运行的TensorFlow集群更新

随着新的库和软件包不断被推出,数据科学团队的需求也在不断的变化,因此BlueData EPIC软件平台提供了一种称为“操作脚本”的机制,该机制允许用户使用新的库和软件包对正在运行集群的所有节点进行更新。在长时间运行的交互或批处理作业中,用户还可以使用基于WebUIRESTful APIPython作业提交。

 

 以上为译文。

本文由北邮@爱可可-爱生活 老师推荐,阿里云云栖社区组织翻译。

文章原标题《Deep Learning With TensorFlow, GPUs, and Docker Containers》,译者:Mags,审校:袁虎。

文章为简译,更为详细的内容,请查看原文 

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
打赏
0
0
0
0
1811
分享
相关文章
如何将现有的应用程序迁移到Docker容器中?
如何将现有的应用程序迁移到Docker容器中?
134 57
|
14天前
|
如何对应用代码进行优化以提高在Docker容器中的性能?
如何对应用代码进行优化以提高在Docker容器中的性能?
137 1
|
14天前
|
如何对迁移到Docker容器中的应用进行性能优化?
如何对迁移到Docker容器中的应用进行性能优化?
118 58
|
19天前
|
使用Docker Compose工具进行容器编排的教程
以上就是使用Docker Compose进行容器编排的基础操作。这能帮你更有效地在本地或者在服务器上部署和管理多容器应用。
176 11
在Docker容器中部署GitLab服务器的步骤(面向Ubuntu 16.04)
现在,你已经成功地在Docker上部署了GitLab。这就是我们在星际中的壮举,轻松如同土豆一样简单!星际旅行结束,靠岸,打开舱门,迎接全新的代码时代。Prepare to code, astronaut!
168 12
Docker网关冲突导致容器启动网络异常解决方案
当执行`docker-compose up`命令时,服务器网络可能因Docker创建新网桥导致IP段冲突而中断。原因是Docker默认的docker0网卡(172.17.0.1/16)与宿主机网络地址段重叠,引发路由异常。解决方法为修改docker0地址段,通过配置`/etc/docker/daemon.json`调整为非冲突段(如192.168.200.1/24),并重启服务。同时,在`docker-compose.yml`中指定网络模式为`bridge`,最后通过检查docker0地址、网络接口列表及测试容器启动验证修复效果。
容器技术实践:在Ubuntu上使用Docker安装MySQL的步骤。
通过以上的操作,你已经步入了Docker和MySQL的世界,享受了容器技术给你带来的便利。这个旅程中你可能会遇到各种挑战,但是只要你沿着我们划定的路线行进,你就一定可以达到目的地。这就是Ubuntu、Docker和MySQL的灵魂所在,它们为你开辟了一条通往新探索的道路,带你亲身感受到了技术的力量。欢迎在Ubuntu的广阔大海中探索,用Docker技术引领你的航行,随时准备感受新技术带来的震撼和乐趣。
242 16
自学软硬件第755 docker容器虚拟化技术youtube视频下载工具
docker容器虚拟化技术有什么用?怎么使用?TubeTube 项目使用youtube视频下载工具
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问