进程通信之消息通信

简介:

消息通信 message


消息是进程间通信的一种重要方式,通常由客户端和服务器端组成。服务器以特定的键值创建一个消息队列,根据约定的消息格式填充要发送的消息和数据类型,把他插入消息队列。而在客户端,根据已知的键值和指定地点类型编码,接收对应的数据。和共享内存的方式相比,不用自己维护消息队列,可以集中精力关注数据传输,但不足的是,对于需要共享或者传输比较复杂数据结构的应用,它就显得不太灵活。


消息通信重要的函数组包括:


int msgget(key_t key, int msgflg);


The msgget()  system  call returns the System V message queue identifier associated with the value of the key argument.  A

new message queue is created if key has the value IPC_PRIVATE or key isn't IPC_PRIVATE, no message queue with the given key

key exists, and IPC_CREAT is specified in msgflg.


If  msgflg specifies both IPC_CREAT and IPC_EXCL and a message queue already exists for key, then msgget() fails with errno

set to EEXIST.  (This is analogous to the effect of the combination O_CREAT | O_EXCL for open(2).)


Upon creation, the least significant bits of the argument msgflg define the permissions of the message queue.   These  per‐

mission  bits have the same format and semantics as the permissions specified for the mode argument of open(2).  (The exe‐

cute permissions are not used.)


int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);


ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,int msgflg);


DESCRIPTION

The  msgsnd() and msgrcv() system calls are used, respectively, to send messages to, and receive messages from, a System V

message queue.  The calling process must have write permission on the message queue in order to send a  message,  and  read

permission to receive a message.


The msgp argument is a pointer to a caller-defined structure of the following general form:


struct msgbuf {

long mtype;       /* message type, must be > 0 */

char mtext[1];    /* message data */

};


The  mtext field is an array (or other structure) whose size is specified by msgsz, a nonnegative integer value.  Messages

of zero length (i.e., no mtext field) are permitted.  The mtype field must have a strictly positive  integer  value.   This

value can be used by the receiving process for message selection (see the description of msgrcv() below).


int msgctl(int msqid, int cmd, struct msqid_ds *buf);


DESCRIPTION

msgctl() performs the control operation specified by cmd on the System V message queue with identifier msqid.


The msqid_ds data structure is defined in <sys/msg.h> as follows:


struct msqid_ds {

struct ipc_perm msg_perm;     /* Ownership and permissions */

time_t        msg_stime;    /* Time of last msgsnd(2) */

time_t        msg_rtime;    /* Time of last msgrcv(2) */

time_t        msg_ctime;    /* Time of last change */

unsigned long   __msg_cbytes; /* Current number of bytes in

queue (nonstandard) */

msgqnum_t      msg_qnum;     /* Current number of messages

in queue */

msglen_t       msg_qbytes;   /* Maximum number of bytes

allowed in queue */

pid_t          msg_lspid;    /* PID of last msgsnd(2) */

pid_t          msg_lrpid;    /* PID of last msgrcv(2) */

};


The ipc_perm structure is defined as follows (the highlighted fields are settable using IPC_SET):


struct ipc_perm {

key_t         __key;       /* Key supplied to msgget(2) */

uid_t         uid;         /* Effective UID of owner */

gid_t         gid;         /* Effective GID of owner */

uid_t         cuid;        /* Effective UID of creator */

gid_t         cgid;        /* Effective GID of creator */

unsigned short mode;        /* Permissions */

unsigned short __seq;       /* Sequence number */

};


Valid values for cmd are:


IPC_STAT

Copy information from the kernel data structure associated with msqid into the msqid_ds structure pointed to by buf.

The caller must have read permission on the message queue.


IPC_SET

Write the values of some members of the msqid_ds structure pointed to by buf to the kernel data structure associated

with this  message  queue, updating also its msg_ctime member.  The following members of the structure are updated:

msg_qbytes, msg_perm.uid, msg_perm.gid, and (the least significant 9 bits of) msg_perm.mode.  The effective  UID  of

the calling  process  must  match  the owner (msg_perm.uid) or creator (msg_perm.cuid) of the message queue, or the

caller must be privileged.  Appropriate privilege (Linux: the CAP_SYS_RESOURCE capability) is required to raise  the

msg_qbytes value beyond the system parameter MSGMNB.


IPC_RMID

Immediately remove  the  message queue, awakening all waiting reader and writer processes (with an error return and

errno set to EIDRM).  The calling process must have appropriate privileges or its effective user ID must  be  either

that of the creator or owner of the message queue.  The third argument to msgctl() is ignored in this case.


IPC_INFO (Linux-specific)

Return information  about system-wide message queue limits and parameters in the structure pointed to by buf.  This

structure is of type msginfo (thus, a cast is required), defined in <sys/msg.h> if  the  _GNU_SOURCE  feature  test

macro is defined:


struct msginfo {

int msgpool; /* Size in kibibytes of buffer pool

used to hold message data;

unused within kernel */

int msgmap;  /* Maximum number of entries in message

map; unused within kernel */

int msgmax;  /* Maximum number of bytes that can be

written in a single message */

int msgmnb;  /* Maximum number of bytes that can be

written to queue; used to initialize

msg_qbytes during queue creation

(msgget(2)) */

int msgmni;  /* Maximum number of message queues */

int msgssz;  /* Message segment size;

unused within kernel */

int msgtql;  /* Maximum number of messages on all queues

in system; unused within kernel */

unsigned short int msgseg;

/* Maximum number of segments;

unused within kernel */

};


The msgmni, msgmax, and msgmnb settings can be changed via /proc files of the same name; see proc(5) for details.


MSG_INFO (Linux-specific)

Return a  msginfo  structure  containing the same information as for IPC_INFO, except that the following fields are

returned with information about system resources consumed by message queues: the msgpool field returns the number of

message queues  that  currently  exist  on the system; the msgmap field returns the total number of messages in all

queues on the system; and the msgtql field returns the total number of bytes in all messages in all  queues  on  the

system.


MSG_STAT (Linux-specific)

Return a msqid_ds structure as for IPC_STAT.  However, the msqid argument is not a queue identifier, but instead an

index into the kernel's internal array that maintains information about all message queues on the system.


RETURN VALUE

On success, IPC_STAT, IPC_SET, and IPC_RMID return 0.  A successful IPC_INFO or MSG_INFO operation returns the index of the

highest used entry in the kernel's internal array recording information about all message queues.  (This information can be

used with repeated MSG_STAT operations to obtain information about all queues on the system.)  A successful MSG_STAT opera‐

tion returns the identifier of the queue whose index was given in msqid.


On error, -1 is returned with errno indicating the error.


依赖的头文件包括:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>


下面以具体可用的一个基于消息通信的服务端和客户端的代码为例:


服务端:test_msg_svc.c

#include<stdio.h>

#include<assert.h>

#include<inttypes.h>


#include <string.h>

#include <stdlib.h>

#include <errno.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/stat.h>

#include <sys/msg.h>


#define MSG_FILE "test_msg_clnt"

#define BUFFER 255

#define PERM S_IRUSR|S_IWUSR


struct msgtype {

  long mtype;

  char buffer[BUFFER+1];

};


int main()

{  

  struct msgtype msg;

  key_t key;

  int msgid;

  if((key=ftok(MSG_FILE,'a'))==-1)

  {                              

{

      fprintf(stderr,"Creat Key Error:%s\a\n",strerror(errno));

      exit(1);

  }  

  if((msgid=msgget(key,PERM|IPC_CREAT|IPC_EXCL))==-1)

  //if((msgid=msgget(key,PERM|IPC_EXCL))==-1)

  {

      fprintf(stderr,"Creat Message Error:%s\a\n",strerror(errno));

      exit(1);

  }  

  while(1)

  {

      msgrcv(msgid,&msg,sizeof(struct msgtype),1,0);

      fprintf(stderr,"Server Receive:%s\n",msg.buffer);

      msg.mtype=2;

      msgsnd(msgid,&msg,sizeof(struct msgtype),0);

     

      memcpy(msg.buffer, "Hello", strlen("Hello") + 1);

      msg.mtype=2;

      msgsnd(msgid,&msg,sizeof(struct msgtype),0);

  }  

 

  exit(0);

}  


客户端: test_msg_clnt.c:

#include<stdio.h>

#include<assert.h>

#include<inttypes.h>


#include <string.h>

#include <stdlib.h>

#include <errno.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/stat.h>

#include <sys/msg.h>


#define MSG_FILE "test_msg_clnt"

#define BUFFER 255

#define PERM S_IRUSR|S_IWUSR


struct msgtype {                                                                                                                    

  long mtype;

  char buffer[BUFFER+1];

};


int main(int argc,char **argv)

{

  struct msgtype msg;

  key_t key;

  int msgid;


  if(argc!=2)

{

      fprintf(stderr,"Usage:%s string\n\a",argv[0]);

      exit(1);

  }

  if((key=ftok(MSG_FILE,'a'))==-1)

  {

      fprintf(stderr,"Creat Key Error:%s\a\n",strerror(errno));

      exit(1);

  }

  if((msgid=msgget(key,PERM))==-1)

  {

      fprintf(stderr,"Creat Message Error:%s\a\n",strerror(errno));

      exit(1);

  }

  msg.mtype=1;

  strncpy(msg.buffer,argv[1],BUFFER);

  msgsnd(msgid,&msg,sizeof(struct msgtype),0);

  memset(&msg,'\0',sizeof(struct msgtype));

  msgrcv(msgid,&msg,sizeof(struct msgtype),2,0);

  fprintf(stdout,"Client receive:%s\n",msg.buffer);

  msgrcv(msgid,&msg,sizeof(struct msgtype),2,0);

  fprintf(stdout,"Client receive:%s\n",msg.buffer);


  exit(0);

}


编译运行及其结果:

[kxyx@localhost testcases]$ gcc -o test_msg_svc test_msg_svc.c

[kxyx@localhost testcases]$ gcc -o test_msg_clnt test_msg_clnt.c

[kxyx@localhost testcases]$ ./test_msg_svc

Server Receive:HaHi

Server Receive:GdLuCK

[kxyx@localhost testcases]$ ./test_msg_clnt HaHi

Client receive:HaHi

Client receive:Hello

[kxyx@localhost testcases]$ ./test_msg_clnt GdLuCK

Client receive:GdLuCK

Client receive:Hello
















本文转自存储之厨51CTO博客,原文链接:http://blog.51cto.com/xiamachao/1793985 ,如需转载请自行联系原作者


相关文章
|
18天前
|
存储 Python
Python中的多进程通信实践指南
Python中的多进程通信实践指南
14 0
|
2月前
|
Java Android开发 数据安全/隐私保护
Android中多进程通信有几种方式?需要注意哪些问题?
本文介绍了Android中的多进程通信(IPC),探讨了IPC的重要性及其实现方式,如Intent、Binder、AIDL等,并通过一个使用Binder机制的示例详细说明了其实现过程。
234 4
|
6月前
|
安全
【进程通信】信号的捕捉原理&&用户态与内核态的区别
【进程通信】信号的捕捉原理&&用户态与内核态的区别
|
6月前
|
Shell
【进程通信】利用管道创建进程池(结合代码)
【进程通信】利用管道创建进程池(结合代码)
|
3月前
|
Linux
Linux源码阅读笔记13-进程通信组件中
Linux源码阅读笔记13-进程通信组件中
|
3月前
|
消息中间件 安全 Java
Linux源码阅读笔记13-进程通信组件上
Linux源码阅读笔记13-进程通信组件上
|
3月前
|
消息中间件 存储 安全
python多进程并发编程之互斥锁与进程间的通信
python多进程并发编程之互斥锁与进程间的通信
|
3月前
|
Python
Python IPC深度探索:解锁跨进程通信的无限可能,以管道与队列为翼,让你的应用跨越边界,无缝协作,震撼登场
【8月更文挑战第3天】Python IPC大揭秘:解锁进程间通信新姿势,让你的应用无界连接
25 0
|
4月前
|
消息中间件 分布式计算 网络协议
从管道路由到共享内存:进程间通信的演变(内附通信方式经典面试题及详解)
进程间通信(Inter-Process Communication, IPC)是计算机科学中的一个重要概念,指的是运行在同一系统或不同系统上的多个进程之间互相发送和接收信息的能力。IPC机制允许进程间共享数据、协调执行流程,是实现分布式系统、多任务操作系统和并发编程的基础。
从管道路由到共享内存:进程间通信的演变(内附通信方式经典面试题及详解)

相关实验场景

更多