【重磅】DeepMind发布通用强化学习新范式,自主机器人可学会任何任务

简介: DeepMind今天发表博客文章,提出一种称为SAC-X(计划辅助控制)的新学习范式,旨在解决让AI以最少的先验知识,从头开始学习复杂控制问题的挑战。这在真实环境中成功让机械臂从头开始学习拾放物体。研究者认为,SAC-X是一种通用的强化学习方法,未来可以应用于机器人以外的更广泛领域。

让孩子(甚至成年人)在使用物品之后自己收拾可能是颇有挑战性的事情,但我们面临一个更大的挑战:试图让我们的AI也这样做。成功与否取决于AI是否掌握几个核心的视觉运动技能:接近一个物体,抓住并举起它,然后打开一个盒子并把物体放进里面。使事情更复杂的是,这些技能还必须用正确的顺序做。

控制任务(control tasks),例如整理桌子或堆放物体,要求agent能够确定如何、何时以及在哪里协调它的模拟手臂和手指的9个关节,以正确地移动物体,实现它的目标。在任何给定一段时间里,可能的运动组合数量会非常庞大,并且需要执行一系列正确的操作,这就构成了一个严峻的探索性问题——使得这成为强化学习研究的一个特别有趣的领域。

奖赏塑形(reward shaping)、学徒学习(apprenticeship learning)以及示范学习等技巧可以帮助解决这个问题但是,这些方法依赖于大量的关于任务的知识——以最少的先验知识,从头开始学习复杂控制问题,仍然是一个公开的挑战。

DeepMind近日发表的新论文“Learning by Playing - Solving Sparse Reward Tasks from Scratch”提出一种新的学习范式,称为“Scheduled Auxiliary Control (SAC-X)”(计划辅助控制),旨在解决这个问题。SAC-X的想法是要从头开始学习复杂的任务,那么agent必须先学习探索和掌握一套基本的技能。就像婴儿在学会爬行和走路之前必须先发展协调和平衡的能力一样,向agent提供一些与简单的技能相对应的内部(辅助)目标可以增加它理解和成功执行更复杂任务的机会。

f1ddf7775f87d7dde3941241e8282257c9ac574c

我们在几个模拟的和真实的机器人任务中演示了SAC-X的方法,包含各种任务,例如不同类物体的堆叠问题,场地整理问题(需要将物体放入盒子)。 我们定义的辅助任务遵循一个总原则:它们鼓励agent去探索它的感知空间( sensor space)。 例如,激活它的手指上的触摸传感器,感知其手腕受到的力,使其本体感受传感器( proprioceptive sensors)中的关节角度达到最大,或强制物体在其视觉相机传感器中移动。如果达到了目标,每个任务会关联到一个简单的奖励,否则奖励为零。

1657f2dd837c85328ac6aa141dd96d0ad4e91cd5

图2:agent学习的第一件事是激活手指上的触摸传感器,并移动两个物体。

e3cafc367309b2c643c6aaee4162695b8084193e

图3:模拟agent最终掌握了“堆叠”物体这个复杂任务。

然后,agent就可以自行决定它当前的“意图”(intention),即接下来的目标。目标可以是辅助任务或外部定义的目标任务。更重要的是,agent可以通过充分利用off-policy learning来检测并从其他任务的奖励信号学习。例如,在拾取或移动一个物体时,agent可能会顺便把它堆叠起来,从而得到“堆叠”的奖励。由于一系列简单的任务可以导致观察到罕见的外部奖励,所以将“意图”进行安排(schedule)的能力是至关重要的。这可以根据所收集到的所有相关知识创建一个个性化的学习课程。

事实证明,这是在如此大的一个领域中充分利用知识的一种有效方法,而且在只有很少的外部奖励信号的情况下尤其有用。我们的agent通过一个 scheduling 模块来决定遵循那个意图。在训练过程中,scheduler通过一个meta-learning算法进行优化,该算法试图使主任务的进度最大化,从而显著提高数据效率。

a3b04a125ac4f2ea0e2c888b818730f5eb10177e

图4:在探索了许多内部辅助任务之后,agent学习如何堆叠和整理物体。

我们的评估显示,SAC-X能够解决我们从头设置的所有任务——使用相同的底层辅助任务集。更令人兴奋的是,我们在实验室的一个真实的机械臂上直接利用SAC-X,成功地从头开始学会了拾取和放置任务。过去,这一点特别具有挑战性,因为真实世界中机器人的学习需要数据效率,所以主流的方法是在模拟环境中预训练(pre-train)一个agent,然后将agent转移到真实的机械臂。

070839100a209e6c92f968fc03fd88ccf6ca7035

图5:在真正的机械臂上,SAC-X学习如何从头开始拾取和移动绿色方块。它此前从未见过这一任务。

我们认为SAC-X是从头开始学习控制任务的重要一步,只需指定一个总体目标。SAC-X允许你任意定义辅助任务:可以基于一般性认识(例如在个实验中是故意激活传感器),但最终可以包含研究人员认为重要的任何任务。从这个角度看,SAC-X是一种通用的强化学习方法,不止是控制和机器人领域,可以广泛应用于一般的稀疏强化学习环境。

这一工作由以下研究者共同完成:Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Van de Wiele, Volodymyr Mnih, Nicolas Heess and Tobias Springenberg. 

a208ce8e66df48a4b61ec5a3244ea6d9b3381b8d


原文发布时间为:2018-03-2

本文作者:Marvin

本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”微信公众号

原文链接:【重磅】DeepMind发布通用强化学习新范式,自主机器人可学会任何任务

相关文章
|
17天前
|
机器学习/深度学习 算法 机器人
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
165 85
|
13天前
|
数据采集 人工智能 算法
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
Seer是由上海AI实验室与北大等机构联合推出的端到端操作模型,结合视觉预测与动作执行,显著提升机器人任务成功率。
59 20
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
|
1月前
|
传感器 人工智能 自然语言处理
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
RDT(Robotics Diffusion Transformer)是由清华大学AI研究院TSAIL团队推出的全球最大的双臂机器人操作任务扩散基础模型。RDT具备十亿参数量,能够在无需人类操控的情况下自主完成复杂任务,如调酒和遛狗。
126 22
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
|
7月前
|
传感器 人工智能 算法
适应多形态多任务,最强开源机器人学习系统八爪鱼诞生
【6月更文挑战第6天】【八爪鱼开源机器人学习系统】由加州大学伯克利分校等机构研发,适用于多形态多任务,已在arXiv上发表。系统基于transformer,预训练于800k机器人轨迹数据集,能快速适应新环境,支持单臂、双机械臂等。特点是多形态适应、多任务处理、快速微调及开源可复现。实验显示其在9个平台有效,但仍需改进传感器处理和语言指令理解。论文链接:https://arxiv.org/pdf/2405.12213
137 1
|
3月前
|
机器学习/深度学习 算法 数据可视化
基于QLearning强化学习的机器人避障和路径规划matlab仿真
本文介绍了使用MATLAB 2022a进行强化学习算法仿真的效果,并详细阐述了Q-Learning原理及其在机器人避障和路径规划中的应用。通过Q-Learning算法,机器人能在未知环境中学习到达目标的最短路径并避开障碍物。仿真结果展示了算法的有效性,核心程序实现了Q表的更新和状态的可视化。未来研究可扩展至更复杂环境和高效算法。![](https://ucc.alicdn.com/pic/developer-ecology/nymobwrkkdwks_d3b95a2f4fd2492381e1742e5658c0bc.gif)等图像展示了具体仿真过程。
178 0
|
4月前
|
人工智能 自然语言处理 机器人
谷歌将大模型集成在实体机器人中,能看、听、说执行57种任务
【9月更文挑战第17天】近年来,人工智能在多模态大模型领域取得显著进展。谷歌最新研发的Mobility VLA系统,将大模型与实体机器人结合,实现了视觉、语言和行动的融合,使机器人能理解并执行复杂多模态指令,如“我应该把这个放回哪里?”系统在真实环境测试中表现出色,但在计算资源、数据需求及伦理问题上仍面临挑战。相关论文发布于https://arxiv.org/abs/2407.07775。
92 9
|
5月前
|
机器学习/深度学习 人工智能 算法
DeepMind机器人打乒乓球,正手、反手溜到飞起,全胜人类初学者
【8月更文挑战第30天】DeepMind团队近日在机器人乒乓球领域取得了重大突破,其研发的机器人在与人类初学者的对战中表现出色,展现了惊人的技术水平和适应能力。这项成果不仅彰显了人工智能在体育竞技中的巨大潜力,还引发了关于AI与人类技能关系的广泛讨论。尽管存在一些挑战,如学习能力和成本问题,但该技术在训练、娱乐等方面的应用前景值得期待。论文详情见【https://arxiv.org/pdf/2408.03906】。
100 5
|
7月前
|
机器人
北大推出全新机器人多模态大模型!面向通用和机器人场景的高效推理和操作
【6月更文挑战第29天】北京大学研发的RoboMamba是新型机器人多模态大模型,融合Mamba SSM的高效推理与视觉编码器,提升复杂任务处理能力。通过微调策略,仅用少量参数即可快速习得操作技能,实现在通用及机器人场景的高效运行,推理速度提升7倍。尽管面临泛化和可解释性挑战,RoboMamba展示了多模态模型的新潜力。[论文链接:](https://arxiv.org/abs/2406.04339)
130 1
|
7月前
|
机器学习/深度学习 传感器 算法
强化学习(RL)在机器人领域的应用
强化学习(RL)在机器人领域的应用
144 4
|
7月前
|
机器学习/深度学习 传感器 算法
强化学习(RL)在机器人领域的应用,尤其是结合ROS(Robot Operating System)和Gazebo(机器人仿真环境)
强化学习(RL)在机器人领域的应用,尤其是结合ROS(Robot Operating System)和Gazebo(机器人仿真环境)
333 2

热门文章

最新文章