谷歌发布PAIR项目:改善人类与人工智能的交互方式

简介:
本文来自AI新媒体量子位(QbitAI)

机器学习技术在过去几年取得了快速发展,技术能力大幅提升——语音识别更精准,图片搜索更迅速,翻译效果也更好。但我们相信,人工智能的潜力不止于此。如果我们从一开始就把人的因素融入系统,它的实用性将会更强。

我们今天宣布People+AI Research Initiative(PAIR)项目。

该项目会将谷歌内部的研究人员集合起来,研究并重新设计人与人工智能系统的互动方式,PAIR的目标是关注人工智能中的“人类端”:用户与技术的关系,它所能促成的新应用,以及如何扩大它的覆盖范围。我们的目标不只是发表论文,还希望推出开源工具,以供研究人员和其他专家使用。

根据用户需求的不同,PAIR的研究分成3个领域:

工程师和研究人员:人工智能由人开发。我们如何才能让工程师更加简单地开发和理解机器学习系统?他们需要哪些教育材料和实践工具?

领域专家:人工智能如何为专业人士提供帮助?随着医生、技师、设计师、农民和音乐人增加人工智能技术的使用,我们如何为为其提供支持?

日常用户:如何确保机器学习包罗万象,好让所有人都能从人工智能的突破中获益?设计思维能够开启全新的人工智能应用?我们能否普及人工智能背后的技术?

我们还没有掌握所有答案,这正是研究的有趣之处,但我们对于发展方向有自己的想法。解开谜题的一大关键就是设计思维。能不能不再单纯把人工智能视作一项技术,而是把它想象成一种设计用的材料?

从这方面来看,或许可以以史为鉴:例如,计算机图形技术的进步提供的不只是更好的绘图方式——而是催生了新型的界面和应用。我们之前也讲过所谓的“以人为本的机器学习”(HCML)。

我们将开放新工具的源代码,制作教育材料(例如人工智能界面设计指南),同时发表研究论文来回答问题,并让尽可能多的人享受到人工智能的力量。

开源工具

今天,我们将开放Facets Overview和Facets Dive两款可视化工具的源代码。这些应用瞄准了人工智能工程师,解决了机器学习流程最开始的问题。Facets让工程师可以明确了解他们用来训练人工智能系统的数据。

 Facets Overview截图


 Facets Dive截图


我们认为这一点非常重要,因为训练数据是现代人工智能系统的关键组成部分,但往往成为不透明和困惑的来源。事实上,机器学习工程与传统软件工程的差异之一,就是更加依赖调试和数据,而非编码。有了Facts,工程师可以更加容易地展开调试,并理解他们正在开发的东西。

地址在此:

https://pair-code.github.io/facets/

支持外部研究

我们也承认,我们并非第一个看到这一机会或提出这些问题的人或机构。很多设计师和学者都开始探索人类/人工智能互动。他们的工作对我们形成了启发,我们将社区建设和研究支持视作自身使命的核心。

我们将与两位访问学者合作——哈佛大学的布伦丹·米德(Brendan Meade)教授和麻省理工学院的哈尔·阿贝尔森(Hal Abelson)——他们都在关注人工智能时代的教育和科学问题。

关注人工智能中的人类因素可以带来全新的可能。我们很高兴与外界共同探索这些可能。

【完】

本文作者:李杉 
原文发布时间:2017-07-11
相关文章
|
19天前
|
人工智能 移动开发 JavaScript
如何用uniapp打包桌面客户端exe包,vue或者uni项目如何打包桌面客户端之electron开发-优雅草央千澈以开源蜻蜓AI工具为例子演示完整教程-开源代码附上
如何用uniapp打包桌面客户端exe包,vue或者uni项目如何打包桌面客户端之electron开发-优雅草央千澈以开源蜻蜓AI工具为例子演示完整教程-开源代码附上
110 18
|
4天前
|
人工智能 数据处理 语音技术
Pipecat实战:5步快速构建语音与AI整合项目,创建你的第一个多模态语音 AI 助手
Pipecat 是一个开源的 Python 框架,专注于构建语音和多模态对话代理,支持与多种 AI 服务集成,提供实时处理能力,适用于语音助手、企业服务等场景。
47 23
Pipecat实战:5步快速构建语音与AI整合项目,创建你的第一个多模态语音 AI 助手
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
MMAudio 是一个基于多模态联合训练的高质量 AI 音频合成项目,能够根据视频内容或文本描述生成同步的音频。该项目适用于影视制作、游戏开发、虚拟现实等多种场景,提升用户体验。
124 7
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
|
1月前
|
存储 人工智能 数据库
Codel:AI代理工具,支持在终端、浏览器、编辑器执行复杂任务和项目
Codel是一款全自主AI代理工具,支持在终端、浏览器和编辑器中执行复杂任务和项目。它运行在沙盒化的Docker环境中,具备自主操作能力,内置浏览器和文本编辑器,所有操作记录存储于PostgreSQL数据库。Codel能够自动完成复杂任务,如创建项目结构、进行网络搜索等,适用于自动化编程、研究与开发、教育与培训以及数据科学与分析等多个领域。
88 11
Codel:AI代理工具,支持在终端、浏览器、编辑器执行复杂任务和项目
|
2月前
|
人工智能 物联网 Shell
今日 AI 开源|共 12 项|开源的DIY健康追踪项目,基于低成本的智能戒指构建私人的健康监测应用
本文介绍了多个开源项目,涵盖了从量子计算错误纠正到视频生成和编辑的广泛应用领域。这些项目展示了AI技术在不同领域的创新和应用潜力。
212 10
今日 AI 开源|共 12 项|开源的DIY健康追踪项目,基于低成本的智能戒指构建私人的健康监测应用
|
2月前
|
存储 人工智能 缓存
官宣开源 阿里云与清华大学共建AI大模型推理项目Mooncake
近日,清华大学和研究组织9#AISoft,联合以阿里云为代表的多家企业和研究机构,正式开源大模型资源池化项目 Mooncake。
|
2月前
|
存储 人工智能 缓存
官宣开源|阿里云与清华大学共建AI大模型推理项目Mooncake
2024年6月,国内优质大模型应用月之暗面Kimi与清华大学MADSys实验室(Machine Learning, AI, Big Data Systems Lab)联合发布了以 KVCache 为中心的大模型推理架构 Mooncake。
|
2月前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
|
2月前
|
人工智能 安全 网络安全
揭秘!大模型私有化部署的全方位安全攻略与优化秘籍,让你的AI项目稳如磐石,数据安全无忧!
【10月更文挑战第24天】本文探讨了大模型私有化部署的安全性考量与优化策略,涵盖数据安全、防火墙配置、性能优化、容器化部署、模型更新和数据备份等方面,提供了实用的示例代码,旨在为企业提供全面的技术参考。
147 6
|
4月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
136 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台