my-large&my-medium&my-small&my-innodb-heavy-4G

简介: my-large.ini 是针对 系统内存大于512M的数据库服务器;my-medium.ini 系统内存128M mysql内存在32-64左右的my-small.ini 系统内存不足64M的其实还有my-huge.
my-large.ini 是针对 系统内存大于512M的数据库服务器;
my-medium.ini 系统内存128M mysql内存在32-64左右的
my-small.ini 系统内存不足64M的
其实还有my-huge.ini,my-innodb-heavy-4G.ini
my-huge.ini 是对于系统内存1-2G的数据库服务器
my-innodb-heavy-4G.ini 只对于innodb 有效.适用于4G的服务器
相关文章
|
5月前
|
机器学习/深度学习 人工智能 监控
理解LLMOps: Large Language Model Operations
理解LLMOps: Large Language Model Operations
119 1
|
8月前
|
人工智能
Big Water Problem
Big Water Problem
44 0
|
机器学习/深度学习 自然语言处理 算法
读 Character-level Convolutional Networks for Text Classification
这篇论文提供了一个关于字符级卷积网络( ConvNets)在文本分类中应用实证研究,我们构建了几个大型数据集,以表明字符级卷积网络可以实现最先进的或竞争性的结果,针对传统模型(如词袋,n-gram及其TFIDF变体)和深度学习模型(如基于单词的ConvNets和循环神经网络)进行比较
|
数据挖掘
Re15:读论文 LEVEN: A Large-Scale Chinese Legal Event Detection Dataset
Re15:读论文 LEVEN: A Large-Scale Chinese Legal Event Detection Dataset
Re15:读论文 LEVEN: A Large-Scale Chinese Legal Event Detection Dataset
|
容器
Leetcode-Medium 11. Container With Most Water
Leetcode-Medium 11. Container With Most Water
104 0
Leetcode-Medium 11. Container With Most Water
PAT (Advanced Level) Practice - 1045 Favorite Color Stripe(30 分)
PAT (Advanced Level) Practice - 1045 Favorite Color Stripe(30 分)
103 0
PAT (Advanced Level) Practice - 1045 Favorite Color Stripe(30 分)
SAP WM Stock Removal Strategy M (Small/Large Quantity)(1)
SAP WM Stock Removal Strategy M (Small/Large Quantity)(1)
SAP WM Stock Removal Strategy M (Small/Large Quantity)(1)
SAP WM Stock Removal Strategy M (Small/Large Quantity)(2)
SAP WM Stock Removal Strategy M (Small/Large Quantity)(2)
SAP WM Stock Removal Strategy M (Small/Large Quantity)(2)
435. Non-overlapping Intervals (Medium)
435. Non-overlapping Intervals (Medium)
102 0
The Rising Smart Logistics Industry: How to Use Big Data to Improve Efficiency and Save Costs
This whitepaper will examine Alibaba Cloud’s Cainiao smart logistics cloud and Big Data powered platform and the underlying strategies used to optimiz.
1555 0
The Rising Smart Logistics Industry: How to Use Big Data to Improve Efficiency and Save Costs