HAWQ技术总结

简介: HAWQ技术总结:1、 官网: http://hawq.incubator.apache.org/2、 特性2.1 sql支持完善ANSI SQL标准,OLAP扩展,标准JDBC/ODBC支持。

HAWQ技术总结:

1、 官网: http://hawq.incubator.apache.org/

2、 特性

2.1 sql支持完善

ANSI SQL标准,OLAP扩展,标准JDBC/ODBC支持。

2.2 具有MPP的性能。

2.3 支持外部数据整合。

      HAWQ能够访问HDFS上的Json文件、Hive、HBase等外部数据。

2.4 支持ACID事务。

  这是很多现有基于SqlonHadoop引擎无法做到的,能够好的保证数据一致性。

3、 优缺点:

优点:

  * sql支持度好:目前能支持SQL99,SQL2003标准

  * 支持事务。

  * 支持insert

缺点:

  * 基于GreenPlum实现,技术实现复杂,包含多个组件。比如对于外部数据源,需要通过PXF单独进行处理;

  * C++实现,对内存的控制比较复杂,如果出现segmentfault直接导致当前node挂掉。

  * 安装配置复杂;

4、 关键技术:

4.1 系统架构与关键组件

     

  HAWQ集群的主要组件。其中有几个Master节点:包括HAWQ master节点,HDFS master节点NameNode,YARN master节点ResourceManager。每个Slave节点上部署有HDFS DataNode,YARN NodeManager以及一个HAWQ Segment。HAWQ Segment在执行查询的时候会启动多个QE (Query Executor, 查询执行器)。

查询执行器运行在资源容器里。在这个架构下,节点可以动态的加入集群,并且不需要数据重分布。当一个节点加入集群时,它会向HAWQ++ Master节点发送心跳,然后就可以接收未来查询了。

     

  上图是HAWQ master节点内部架构图。可以看到在HAWQ的 Master节点内部有如下重要组件:查询解析器,优化器,资源代理,资源管理器,HDFS元数据缓存,容错服务,查询派遣器和元数据服务。在Slave节点上安装有一个物理Segment,在查询执行时,针对一个查询,弹性执行引擎会启动多个虚拟Segment同时执行查询,节点间数据交换通过Interconnect(高速互联网络,基于UDP)进行。如果一个查询启动了1000个虚拟Segment,意思是这个查询被均匀的分成了1000份任务,这些任务会并行执行。

  其中,资源管理器通过资源代理向全局资源管理器(比如YARN)动态申请资源,并缓存资源。在不需要的时候返回资源。缓存资源的主要原因是减少HAWQ与yarn之间的交互代价。因为HAWQ是支持ms级查询。如果每一个查询都向资源管理器申请资源的话,性能会受到影响。位置信息存储在HDFS NameNode上。如果每个查询都访问HDFS NameNode会造成NameNode的瓶颈。所以在HAWQ Master节点上建立了HDFS元数据缓存。查询派遣器则是在优化完查询以后,蒋计划派遣到各个节点上执行,并协调查询执行。

4.2  PXF扩展框架

HAWQ通过名为Pivotal eXtension Framework(PXF)的模块提供数据联合功能。除了常见的数据联合功能外,PXF还利用SQL on Hadoop提供可扩展的功能,PXF提供框架API 使得开发人员能够数据堆栈开发新的连接器,从而增强强数据引擎的松散耦合。

4.3  GPORCA查询优化器

在分区查询、子查询、去重聚合、insert上改进优化。

5、 Benchmark

完全支持TPC-DS.

     

图中所示的基准测试是通过TPC-DS中的99个模板生成的111个查询来执行的。图中显示了4种基于SQL-on-Hadoop常见系统的合规等级,绿色和蓝色分别表示:每个系统可以优化的查询个数;可以完成执行并返回查询结果的查询个数。从图中可以看到,HAWQ完成了所有查询

 

当神已无能为力,那便是魔渡众生
目录
相关文章
|
存储 运维 Cloud Native
The Snowflake Elastic Data WareHouse 论文解读
Snowflake是目前话题度超高的云原生数仓产品,从20年下半年上市到现在已经市值千亿了。它的流行进一步印证了云的重要性。纵观现在大大小小的数据库厂商,上云是必然要走的战略步骤,而snowflake则更加直接,类似于AWS Aurora或我们的PolarDB,它就是围绕着云基础设施构建的OLAP数据库产品。
1681 0
The Snowflake Elastic Data WareHouse 论文解读
|
存储 NoSQL Java
SpringBoot 中使用 MongoDB 基于 MongoRepository增删改查(基础篇)
SpringBoot 中使用 MongoDB 基于 MongoRepository增删改查(基础篇)
1194 0
|
3月前
|
人工智能 监控 安全
微信怎么无限制加人?有这种技术吗
微信无限制加人技术解析与合规实践指南
|
3月前
|
人工智能 数据可视化 前端开发
一文读懂 AI Agent 的企业级落地逻辑丨科普扫盲
在数字化转型浪潮下,AI Agent正成为企业提效赋能的重要工具。本文深入剖析AI Agent在企业落地的现状、挑战与关键要素,探讨技术架构选择、性能平衡、场景应用及生态建设等核心问题,助力企业把握AI智能体发展趋势,实现价值创造与风险可控的协同发展。
|
8月前
|
SQL 弹性计算 运维
Hologres计算组实例&分时弹性入门实践
本文由骆撷冬(Hologres PD)撰写,围绕Hologres计算组实例与分时弹性的入门实践展开。内容分为三部分:第一部分介绍Hologres计算组实例的原理与架构,解决负载隔离、资源浪费、大任务和运维难题;第二部分演示计算组实例的入门实践,包括管理、授权、连接及监控等操作;第三部分讲解分时弹性的使用,涵盖配置方法、成本优化及监控告警。通过具体案例与操作步骤,帮助用户更好地理解和应用Hologres的弹性计算能力。
|
12月前
|
机器学习/深度学习 存储 人工智能
【AI系统】为什么 GPU 适用于 AI
本文探讨了GPU在AI计算中的应用,从卷积计算的基本原理入手,解析了GPU线程分级与AI计算模式的关系,以及矩阵乘法如何通过GPU编程提升算力利用率。文章还介绍了计算强度的概念,分析了不同数据结构对计算强度的影响,以及GPU中Tensor Core的作用,强调了在不同存储位置下,找到计算强度与矩阵大小的最佳平衡点对AI计算系统优化的重要性。
771 2
|
10月前
|
存储 人工智能 关系型数据库
AnalyticDB PostgreSQL版:Data+AI 时代的企业级数据仓库
AnalyticDB PostgreSQL版是面向Data+AI时代的企业级数据仓库,涵盖产品架构、核心技术、客户案例及功能发布四大部分。产品架构包括数据分析和AI/ML的存储与计算优化;核心技术涉及高性能实时引擎Beam、向量化执行引擎Laser及优化器Orca;客户案例展示了丝芙兰和领跑汽车的应用;新功能如pgsearch全文检索和In-Database AI/ML进一步提升了性能与易用性。
304 0
|
存储 关系型数据库 分布式数据库
PolarDB-X HTAP新特性 ~ 列存索引
随着数据爆炸式的增长,传统的OLTP和OLAP解决方案基于简单的读写分离或ETL模型,将在线库的数据以T+1的方式抽取到数据仓库中进行计算,这种方案存在存储成本高、实时性差、链路和维护成本高等缺陷。 为应对数据爆炸式增长的挑战,PolarDB分布式版本基于对象存储设计了一套列存索引(Clustered Columnar Index,CCI)功能,支持将行存数据实时同步到列存存储上
76390 148
|
SQL 容灾 关系型数据库
[版本更新] PolarDB-X V2.4 列存引擎开源正式发布
[版本更新] PolarDB-X V2.4 列存引擎开源正式发布!
[版本更新] PolarDB-X V2.4 列存引擎开源正式发布
|
物联网 PyTorch 算法框架/工具
介绍一个大语言模型的微调框架Swift | AIGC
介绍一个大语言模型的微调框架Swift 【7月更文挑战第4天】
2148 3