比特币系统采用的公钥密码学方案和ECDSA签名算法介绍——第二部分:代码实现(C语言)

简介: (原理部分请参考:《比特币系统采用的公钥密码学方案和ECDSA签名算法介绍——第一部分:原理》)依赖库:openssl-1.01h ,参考文档:http://openssl.sourcearchive.com/为降低代码复杂度,本文借助了openssl库来实现大整数(BIGNUM)的运算、伪随机数的生成、HASH算法、密钥生成以及数字签名。

(原理部分请参考:《比特币系统采用的公钥密码学方案和ECDSA签名算法介绍——第一部分:原理》)

依赖库:openssl-1.01h ,参考文档:http://openssl.sourcearchive.com/

为降低代码复杂度,本文借助了openssl库来实现大整数(BIGNUM)的运算、伪随机数的生成、HASH算法、密钥生成以及数字签名。

比特币系统中的整数字节顺序:(首先要搞清楚字节次序,看bitcoin-qt源码时会有一定帮助)

  • 大整数(超过64位的)使用big endian编码,如HASH值。
  • 64位及以下的变长整数使用little endian编码,如Varint, Compact Integer等。
  • 64位及以下的常规整数使用系统内定的编码。如int64_t, itn32_t等。

一、 哈希函数:

目前bitcoin-qt中的使用的HASH函数主要是Hash256和Hash160。(代码中预留了Hash512,但未使用)

Hash256是对原始数据进行两次SHA256操作,生成一个256位(bit)的HASH结果。应用场合:block_header, 交易(Transactions),base58check校验等。

Hash160是对原始数据先进性一次SHA256操作,再对生成的hash值进行RIPEMD160操作,生成一个160位(bit)的HASH结果。应用场合:bitcoin地址。

示例代码:


#define HASH256_SIZE (32)
#define HASH160_SIZE (20)
size_t Hash256(const unsigned char * begin, size_t size, unsigned char to[])
{
unsigned char hash[HASH256_SIZE];
if(NULL == begin || size == 0) return 0;
SHA256(begin, size, (unsigned char *)&hash[0]);
SHA256(&hash[0], sizeof hash, (unsigned char *)&to[0]);
return HASH256_SIZE;
}


size_t Hash160(const unsigned char * begin, size_t size, unsigned char to[])
{
unsigned char hash[HASH256_SIZE];
if(NULL == begin || size == 0) return 0;
SHA256(begin, size, (unsigned char *)&hash[0]);
RIPEMD160(&hash[0], sizeof hash, &to[0]);
return HASH160_SIZE;
}

二、 Base58编码
编码特点:输出结果为不容易混淆的字母和数字,便于鼠标操作(用鼠标双击即可选取完整的文本)。
应用场合:Bitcoin的地址、私钥导出。

编码步骤:
将原始数据看作一个大整数 E
(1) r = E mod 58
(2) 将r附加到输出缓冲区,
(3) E = E / 58, 若E ≠ 0,则返回(1)
(4) 检查原始数据是否有前导的’0’,如有,则将base58编码的0添加到输出缓冲区中
(5) 字符串反转(转换成big endian的格式)

示例代码:


static const char* pszBase58 = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";
size_t Base58Encode(const unsigned char *begin, size_t size, char *to)
{
size_t cb = 0;
BN_CTX * ctx = NULL;
unsigned char c;
unsigned char *pzero = (unsigned char *)begin;
unsigned char *pend = (unsigned char *)(begin + size);
char *p = to;
// bool fSign = 0;
BIGNUM bn, dv, rem, bn58, bn0;
if((NULL == begin) || (size == 0)) return 0; // invalid parameter
cb = size * 138 /100+1; // the size of output will less than (138/100 * sizeof(src))
//** output buffer should be allocated enough memory
if(NULL == to) return cb;
BN_init(&bn58); BN_init(&bn0);
BN_set_word(&bn58, 58);
BN_zero(&bn0);
BN_init(&bn); BN_init(&dv); BN_init(&rem);
BN_bin2bn(begin, size, &bn);
ctx = BN_CTX_new();
if(NULL==ctx) return 0;
// 前面的都是初始化工作,下面是正式的算法
while(BN_cmp(&bn, &bn0) > 0)
{
if(!BN_div(&dv, &rem, &bn, &bn58, ctx)) break;
bn = dv;
c = BN_get_word(&rem);
*(p++) = pszBase58[c];
}
// 添加前导的0
while(*(pzero++)==0)
{
*(p++) = pszBase58[0];
if(pzero > pend) break;
}
*p = '';
cb = p - to;
ReverseBytes((unsigned char *)to, cb); // output as a big endian integer
BN_CTX_free(ctx);
return cb;
}

解码步骤:

static const int8_t b58digits[] = {
-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,
-1, 0, 1, 2, 3, 4, 5, 6, 7, 8,-1,-1,-1,-1,-1,-1,
-1, 9,10,11,12,13,14,15, 16,-1,17,18,19,20,21,-1,
22,23,24,25,26,27,28,29, 30,31,32,-1,-1,-1,-1,-1,
-1,33,34,35,36,37,38,39, 40,41,42,43,-1,44,45,46,
47,48,49,50,51,52,53,54, 55,56,57,-1,-1,-1,-1,-1,
};


size_t Base58Decode(const char *begin, size_t size, unsigned char *to)
{
unsigned char c;
unsigned char *p = (unsigned char *)begin;
unsigned char *pend = p + size;
size_t cb;
BIGNUM bn, bnchar;
BIGNUM bn58, bn0;
BN_CTX *ctx = BN_CTX_new();
if(NULL == ctx) return 0;
BN_init(&bn58);
BN_init(&bn0);
BN_init(&bn); BN_init(&bnchar);
BN_set_word(&bn58, 58);
BN_zero(&bn0);
while(p < pend)
{
c = *p;
if(c & 0x80) goto label_errexit;
if(-1 == b58digits[c]) goto label_errexit;
BN_set_word(&bnchar, b58digits[c]);
if(!BN_mul(&bn, &bn, &bn58, ctx)) goto label_errexit;
BN_add(&bn, &bn, &bnchar);
p++;
}
cb = BN_num_bytes(&bn);
if(NULL == to) return cb;
BN_bn2bin(&bn, to);
BN_CTX_free(ctx);
return cb;
label_errexit:
if(NULL != ctx) BN_CTX_free(ctx);
return 0;
}

三、 私钥生成
比特币系统中的私钥是一个256位(bits)的随机整数。
取值范围在[1,n-1]之间,其中,
n (order) = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141
生成步骤:
1、初始化伪随机数种子
2、生成一个256位的随机数
3、验证随机数范围是否在[1,n-1],如超出范围,则返回2

示例代码:


BOOL ECKey_Check(const unsigned char vch[32]);
uint32_t ECKey_GeneratePrivKey(EC_KEY * pkey, unsigned char vch[32])
{
RandAndSeed(); // 初始化随机数种子,具体实现请参考附件中的源文件,或bitcoin-qt的源码
do
{
RAND_bytes(vch, 32); // 利用openssl库生成一个256位的随机数
}while(!ECKey_Check(vch)); // 检查取值范围是否合法
if(pkey != NULL) return ECKey_GenKeypair(pkey, vch); // 生成密钥对
return 32; // 私钥的字节数
}


BOOL ECKey_Check(const unsigned char vch[32])
{
static const unsigned char order[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40
};
BIGNUM bn; // 私钥
BIGNUM bnOrder; // G在Fp下的序号order
BIGNUM bn0; // 0
BN_init(&bn);
BN_init(&bnOrder);
BN_init(&bn0);
BN_zero(&bn0);
BN_bin2bn(vch, 32, &bn); //将二进制序列转化为一个大整数
BN_bin2bn(order, 32, &bnOrder);
//** 0 < [私钥] < order
if(BN_is_zero(&bn)) return 0; // 私钥不能为0
if(BN_cmp(&bn, &bnOrder) > 0) return 0; //私钥必须小于order
return 1;
}

四、公钥的生成

公钥的计算公式:Q = dG
Q: 公钥
d: 私钥
G: 椭圆曲线基点


//** 初始化EC_KEY,告知openssl库将使用secp256k1椭圆曲线。
EC_KEY * ECKey_new()
{
return EC_KEY_new_by_curve_name(NID_secp256k1);
}


uint32_t ECKey_GenKeypair(EC_KEY * pkey, unsigned char vch[HASH256_SIZE])
{
//** pkey = ECKey_new();
const uint32_t key_size = HASH256_SIZE;
const EC_GROUP * group;
BIGNUM bn;
BIGNUM * privkey = &bn;
BN_CTX * ctx = NULL;
EC_POINT * pubkey = NULL;
if(NULL == pkey) return 0;
BN_init(&bn); // BIGNUM使用前最好先初始化,否则windows + mingw环境下有时会出错
group = EC_KEY_get0_group(pkey); // group结构体中存储了G值和运算规则
pubkey = EC_POINT_new(group); // 给pubkey分配内存,pubkey为曲线上的一个点
ctx = BN_CTX_new();
if(NULL == pubkey || NULL == ctx) goto label_errexit;
if(BN_bin2bn(vch, key_size, &bn)) // 将私钥(二进制形式)转化为一个大整数
{
if(EC_POINT_mul(group, pubkey, privkey, NULL, NULL, ctx)) // pubkey =privkey*G
{
// 将密钥存储于EC_KEY结构体中,便于导出为所需的格式
EC_KEY_set_private_key(pkey, privkey);
EC_KEY_set_public_key(pkey, pubkey);
}
BN_clear_free(&bn);
}
EC_POINT_free(pubkey);
BN_CTX_free(ctx);
return key_size;
label_errexit:
if(NULL!=pubkey) EC_POINT_free(pubkey);
if(NULL != ctx) BN_CTX_free(ctx);
return 0;
}

公钥提取:


uint32_t ECKey_GetPubkey(EC_KEY * pkey, unsigned char * pubkey, BOOL fCompressed)
{
unsigned char * p_pubkey = pubkey;
uint32_t cb;
EC_KEY_set_conv_form(pkey, fCompressed?POINT_CONVERSION_COMPRESSED:POINT_CONVERSION_UNCOMPRESSED); // 公钥采用压缩还是非压缩格式输出
cb = i2o_ECPublicKey(pkey, NULL);
if(0==cb || cb>65) return 0;
if(NULL == pubkey) return cb;
// 此处不要直接用pubkey,openssl库会自动修改传递进去的指针
cb = i2o_ECPublicKey(pkey, &p_pubkey);
return cb;
}

五、 比特币地址的生成和私钥的导出

比特币地址的生成:
步骤:
1、H0 = Hash160(公钥)
2、在H0前添加版本号: 0×00,  –> extH0
3、生成校验值H1 = Hash256(extH0)
4、将H1的前四个字节 复制到extH0之后, ext_pubkey ={0×0, H0, <first 4 bytes of H1>};
5、对ext_pubkey进行base58编码,输出的结果即为比特币地址

//**************************************************
//** Base58check编码生成比特币地址
uint32_t PubkeyToAddr(const unsigned char * pubkey, size_t size, char *to)
{
struct
{
unsigned char version;
unsigned char vch[20];
unsigned char checksum[4];
}ext_pubkey;
unsigned char hash[32]={0};
printf("ext_pubkey size: %d\n", sizeof(ext_pubkey));
ext_pubkey.version = 0x00;
Hash160(pubkey, size, &ext_pubkey.vch[0]);
Hash256(&ext_pubkey.version, 1+20, hash);
memcpy(ext_pubkey.checksum, hash, 4);
return Base58Encode((unsigned char *)&ext_pubkey.version, sizeof(ext_pubkey), to);
}

私钥导出格式:

步骤:
1、将私钥转化为256位的二进制格式V
2、在V前添加版本号: 0×80, (如果使用压缩标志,则在V后再添加一个0×01),–>extV
3、生成校验值H1 = Hash256(extV)
4、将H1的前四个字节 复制到extV之后, ext_privkey ={0×80, V, (0×01), <first 4 bytes of H1>};
5、对ext_privkey进行base58编码,输出的结果即为比特币地址


uint32_t PrivkeyToWIF(const unsigned char vch[HASH256_SIZE], char *to, BOOL fCompressed)
{
struct
{
unsigned char version;
unsigned char vch[HASH256_SIZE];
unsigned char checksum[5];
}ext_privkey;
unsigned char hash[HASH256_SIZE];
uint32_t offset = fCompressed?1:0;
ext_privkey.version = 0x80;
memcpy(ext_privkey.vch, vch, 32);
if(offset) ext_privkey.checksum[0] = 0x01;
Hash256(&ext_privkey.version, 1 + HASH256_SIZE +offset, hash);
memcpy(&ext_privkey.checksum[offset], hash, 4 );
return Base58Encode(&ext_privkey.version, 1 + HASH256_SIZE + offset + 4, to);
}

六、签名和验证

签名步骤:
1、H = Hash256(M)
2、调用openssl的ECDSA_do_sign函数,生成签名sig = (r,s)。
3、检查s值是否大于order/2,如果大于,则利用 s + (-s) = order, -s = order –s, 这一性质将签名改写为(r, -s)的形式。这两种形式的签名是等效的,但如果s > order/2,由于验证方的实现方式不可预知,验证方有可能将其视为一个更大的正整数而不是-s,这会导致签名验证失败。


size_t ECKey_Sign(EC_KEY *pkey, const unsigned char hash[HASH256_SIZE], unsigned char **to)
{
//** if (*to) == NULL, the caller should use OPENSSL_free(*to) to free the memory
size_t cb = 0;
ECDSA_SIG *sig = NULL;
BN_CTX * ctx = NULL;
BIGNUM order; // The order of G
BIGNUM halforder; // get sign/unsign mark
unsigned char *output = NULL;
const EC_GROUP * group = EC_KEY_get0_group(pkey); // secp256k1: G
if(NULL == group) return 0;
sig = ECDSA_do_sign((unsigned char *)&hash[0], HASH256_SIZE, pkey);
if(NULL == sig) return 0;
//** sig = (r,s) = (r,-s)
//** s must less than order/2, otherwise, some app may parse '-s' as a large unsigned positive integer
ctx = BN_CTX_new();
if(NULL == ctx) goto label_exit;
//** allocate memory for bignum
BN_init(&order);
BN_init(&halforder);
// get the order of G
EC_GROUP_get_order(group, &order, ctx); // secp256k1: n
BN_rshift1(&halforder, &order);
if(BN_cmp(sig->s, &halforder)>0)
{
// if s > order/2, then output -s. (-s = (order - s))
BN_sub(sig->s, &order, sig->s);
}
BN_CTX_free(ctx);
output = *to;
cb = ECDSA_size(pkey);
if(NULL == output)
{
output = (unsigned char *)OPENSSL_malloc(cb);
if(NULL == output) goto label_exit;
}
if(NULL == *to) *to = output;
//** i2d_ECDSA_SIG DER encode content of ECDSA_SIG object
//** (note: this function modifies *pp (*pp += length of the DER encoded signature)).
//** do not pass the address of 'to' directly
cb = i2d_ECDSA_SIG(sig, &output);
label_exit:
ECDSA_SIG_free(sig);
return cb;
}

验证签名:

BOOL ECKey_Verify(EC_KEY *pkey, const unsigned char hash[HASH256_SIZE], const unsigned char *sig, size_t size)
{
if(ECDSA_verify(0, (unsigned char *)&hash[0], HASH256_SIZE, sig, size, pkey) != 1) // -1 = error, 0 = bad sig, 1 = good
return FALSE;
return TRUE;
}

 

附件:

1. “sample.h”

2.“ecc_sample1.c”

3. VS6下需要下载gnu兼容的<stdint.h>

cprogram


目录
相关文章
|
22天前
|
存储 算法 C语言
"揭秘C语言中的王者之树——红黑树:一场数据结构与算法的华丽舞蹈,让你的程序效率飙升,直击性能巅峰!"
【8月更文挑战第20天】红黑树是自平衡二叉查找树,通过旋转和重着色保持平衡,确保高效执行插入、删除和查找操作,时间复杂度为O(log n)。本文介绍红黑树的基本属性、存储结构及其C语言实现。红黑树遵循五项基本规则以保持平衡状态。在C语言中,节点包含数据、颜色、父节点和子节点指针。文章提供了一个示例代码框架,用于创建节点、插入节点并执行必要的修复操作以维护红黑树的特性。
45 1
|
22天前
|
NoSQL 编译器 程序员
【C语言】揭秘GCC:从平凡到卓越的编译艺术,一场代码与效率的激情碰撞,探索那些不为人知的秘密武器,让你的程序瞬间提速百倍!
【8月更文挑战第20天】GCC,GNU Compiler Collection,是GNU项目中的开源编译器集合,支持C、C++等多种语言。作为C语言程序员的重要工具,GCC具备跨平台性、高度可配置性及丰富的优化选项等特点。通过简单示例,如编译“Hello, GCC!”程序 (`gcc -o hello hello.c`),展示了GCC的基础用法及不同优化级别(`-O0`, `-O1`, `-O3`)对性能的影响。GCC还支持生成调试信息(`-g`),便于使用GDB等工具进行调试。尽管有如Microsoft Visual C++、Clang等竞品,GCC仍因其灵活性和强大的功能被广泛采用。
49 1
|
3天前
|
前端开发 搜索推荐 算法
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
中草药管理与推荐系统。本系统使用Python作为主要开发语言,前端使用HTML,CSS,BootStrap等技术和框架搭建前端界面,后端使用Django框架处理应用请求,使用Ajax等技术实现前后端的数据通信。实现了一个综合性的中草药管理与推荐平台。具体功能如下: - 系统分为普通用户和管理员两个角色 - 普通用户可以登录,注册、查看物品信息、收藏物品、发布评论、编辑个人信息、柱状图饼状图可视化物品信息、并依据用户注册时选择的标签进行推荐 和 根据用户对物品的评分 使用协同过滤推荐算法进行推荐 - 管理员可以在后台对用户和物品信息进行管理编辑
34 12
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
|
2天前
|
存储 算法 C语言
数据结构基础详解(C语言):单链表_定义_初始化_插入_删除_查找_建立操作_纯c语言代码注释讲解
本文详细介绍了单链表的理论知识,涵盖单链表的定义、优点与缺点,并通过示例代码讲解了单链表的初始化、插入、删除、查找等核心操作。文中还具体分析了按位序插入、指定节点前后插入、按位序删除及按值查找等算法实现,并提供了尾插法和头插法建立单链表的方法,帮助读者深入理解单链表的基本原理与应用技巧。
|
2天前
|
存储 C语言 C++
数据结构基础详解(C语言) 顺序表:顺序表静态分配和动态分配增删改查基本操作的基本介绍及c语言代码实现
本文介绍了顺序表的定义及其在C/C++中的实现方法。顺序表通过连续存储空间实现线性表,使逻辑上相邻的元素在物理位置上也相邻。文章详细描述了静态分配与动态分配两种方式下的顺序表定义、初始化、插入、删除、查找等基本操作,并提供了具体代码示例。静态分配方式下顺序表的长度固定,而动态分配则可根据需求调整大小。此外,还总结了顺序表的优点,如随机访问效率高、存储密度大,以及缺点,如扩展不便和插入删除操作成本高等特点。
|
2天前
|
存储 C语言
数据结构基础详解(C语言): 栈与队列的详解附完整代码
栈是一种仅允许在一端进行插入和删除操作的线性表,常用于解决括号匹配、函数调用等问题。栈分为顺序栈和链栈,顺序栈使用数组存储,链栈基于单链表实现。栈的主要操作包括初始化、销毁、入栈、出栈等。栈的应用广泛,如表达式求值、递归等场景。栈的顺序存储结构由数组和栈顶指针构成,链栈则基于单链表的头插法实现。
|
2天前
|
存储 算法 C语言
C语言手撕实战代码_二叉排序树(二叉搜索树)_构建_删除_插入操作详解
这份二叉排序树习题集涵盖了二叉搜索树(BST)的基本操作,包括构建、查找、删除等核心功能。通过多个具体示例,如构建BST、查找节点所在层数、删除特定节点及查找小于某个关键字的所有节点等,帮助读者深入理解二叉排序树的工作原理与应用技巧。此外,还介绍了如何将一棵二叉树分解为两棵满足特定条件的BST,以及删除所有关键字小于指定值的节点等高级操作。每个题目均配有详细解释与代码实现,便于学习与实践。
|
2天前
|
存储 算法 C语言
C语言手撕实战代码_二叉树_构造二叉树_层序遍历二叉树_二叉树深度的超详细代码实现
这段代码和文本介绍了一系列二叉树相关的问题及其解决方案。其中包括根据前序和中序序列构建二叉树、通过层次遍历序列和中序序列创建二叉树、计算二叉树节点数量、叶子节点数量、度为1的节点数量、二叉树高度、特定节点子树深度、判断两棵树是否相似、将叶子节点链接成双向链表、计算算术表达式的值、判断是否为完全二叉树以及求二叉树的最大宽度等。每道题目均提供了详细的算法思路及相应的C/C++代码实现,帮助读者理解和掌握二叉树的基本操作与应用。
|
2天前
|
存储 算法 C语言
C语言手撕实战代码_循环单链表和循环双链表
本文档详细介绍了用C语言实现循环单链表和循环双链表的相关算法。包括循环单链表的建立、逆转、左移、拆分及合并等操作;以及双链表的建立、遍历、排序和循环双链表的重组。通过具体示例和代码片段,展示了每种算法的实现思路与步骤,帮助读者深入理解并掌握这些数据结构的基本操作方法。
|
2天前
|
算法 C语言 开发者
C语言手撕实战代码_单链表
本文档详细介绍了使用C语言实现单链表的各种基本操作和经典算法。内容涵盖单链表的构建、插入、查找、合并及特殊操作,如头插法和尾插法构建单链表、插入元素、查找倒数第m个节点、合并两个有序链表等。每部分均配有详细的代码示例和注释,帮助读者更好地理解和掌握单链表的编程技巧。此外,还提供了判断子链、查找公共后缀等进阶题目,适合初学者和有一定基础的开发者学习参考。