Golang之并发

简介:         Go从语言层面就支持了并行,这让C/C++程序猿们泪流满面一、goroutine         goroutine是Go语言并行设计的核心。goroutine说到底就是线程,但它比线程更小,十几个goroutine可能体现在底层就是五六个线程,Go语言内部帮你实现了这些goroutine之间的内存共享。
        Go从语言层面就支持了并行,这让C/C++程序猿们泪流满面
一、goroutine
        goroutine是Go语言并行设计的核心。goroutine说到底就是线程,但它比线程更小,十几个goroutine可能体现在底层就是五六个线程,Go语言内部帮你实现了这些goroutine之间的内存共享。执行goroutine只需极少的栈内存(大概是4~5KB),当然会根据相应的数据伸缩。因此,可同时运行成千上万个并发任务。goroutine比thread更易用、更高效、更轻便。
        goroutine是通过Go语言runtime管理的一个线程管理器。goroutine通过go关键字实现,其实就是一个普通的函数,类似于线程函数:
        go hello(a, b, c)
        通过关键字go就启动了一个goroutine,举例说明如下:
        package main
        import (
            "fmt"
            "runtime"
        )
        func say(s string) {
            for i :=0; i                 fmt.Println(s)
            }
        }
        func main() {
            go say("world")    //开一个新的goroutines执行
            say("hello")    //当前goroutines执行
        }
        输出:
        hello
        world
        hello
        world
        hello
        world
        hello
        world
        hello
        上面多个goroutine运行在同一个进程里面,共享内存数据,不过设计上应该遵循:不要通过共享来通信,而要通过通信来共享。
        runtime.Gosched()表示让CPU把时间片让给别人,下次某个时候继续恢复执行该goroutine。
        默认情况下,调度器仅适用单线程,也就是说只实现了并发。想要发挥多核处理器的并行,需要在程序中显示调用runtime.GOMAXPROCS(n)告诉调度器同时使用多个线程。GOMAXPROCS设置了同时运行逻辑代码的系统线程的最大数量,并返回之前的设置。如果n这篇文章。          

二、channels
        goroutine运行在相同的地址空间,因此,访问共享内存必须做好同步。Go语言提供了很好的通信机制channel。channel可以与Unix shell中的双向管道做类比,通过它发送或者接收值。这些值只能是特定的类型:channel类型。定义channel时,也需要定义发送到channel的值的类型。注意:必须使用make创建channel。
        ci := make(chan int)
        cs := make(chan string)
        cf := make(chan interface{})
        channel通过操作符         ch         v :=         我们把这些应用到我们的例子中来:
        package main
        import "fmt"
        func sum(a []int, c chan int) {
            sum := 0
            for _, v:=range a {
                sum += v
            }
            c         }
        func main() {
            a := []int{7, 2, 8, -9, 4, 0}
            c := make(chan int)
            go sum(a[:len(a)/2], c)
            go sum(a[len(a)/2:], c)
            x, y :=             fmt.Println(x, y, x+y)
        }
        默认情况下,channel接收和发送数据的都是阻塞的,除非另一端已经准备好,这样就使得goroutines同步变得更加简单,而不需要显示的lock。所谓阻塞,就是如果读取(value :=
三、Buffered channels
        前面介绍了默认的非缓存类型的channel,不过Go语言也允许指定channel的缓冲大小,很简单,就是channel可以存储多少元素。ch:=make(chan bool, 4),创建了可以存储4个元素的bool型channel。在这个channel中,前4个元素可以无阻塞的写入,当写入第5个元素时,代码将会阻塞,直到其它goroutine从channel中读取一些元素,腾出空间。
        ch := make(chan type, value)
        value == 0 !无缓冲(阻塞)
        value > 0 !缓冲(非阻塞,直到value个元素)
        举例说明如下(修改相应的value值):
        package main
        import "fmt"
        func main() {
            c := make(chan int, 2)        //修改2为1就报错,修改2为3可以正常运行
            c             c             fmt.Println(             fmt.Println(         }

四、Range和Close
        前面例子中,需要读取两次c,不是很方便,也可以通过range,像操作slice或者map一样操作缓存类型的channel。具体请看下例:
        package main
        import (
            "fmt"
        )
        func fibonacci(n int, c chan int) {
            x, y := 1, 1
            for i:+0; i                 c                 x, y = y, x+y
            }
            close(c)
        }
        func main() {
            c := make(chan int, 10)
            go fibonacci(cap(c), c)
            for i := range c {
                fmt.Println(i)
            }
        }
        for i := range c能够不断读取channel里面的数据,直到该channel被显示关闭。从上面代码可以看出,生产者通过关键字close函数显示关闭channel。关闭channel后就无法再发送任何数据了,消费者可以通过语法v, ok :=         需要注意的是:应该在生产者的地方关闭channel,而不是消费者的地方去关闭它,这样容易引起panic。
        另外,channel不像文件之类需要经常去关闭,只有当你确实没有任何数据发送了,或者想显式的结束range循环之类的操作。

五、Select
        前文介绍的都是只有一个channel的情况,如果有多个channel,可以通过关键字select来监听channel上的数据流动。
        select默认是阻塞的,只有当监听的channel中发送或接收可以进行时才会运行,当多个channel都准备好的时候,select是随机选择一个执行的。
        package main
        import "fmt"
        func fibonacci(c, quit chan int) {
            x, y := 1, 1
            for {
                select {
                case c                     x, y = y, x+y
                case                     fmt.Println("quit")
                    return
                }
            }
        }
        func main() {
            c := make(chan int)
            quit := make(chan int)
            go func() {
                for i:=0; i                     fmt.Println(                 }
                quit             } ()
            fibonacci(c, quit)
        }
        在select里面还有default语法,这类似于switch,default就是当监听的channel都没有准备好的时候,默认执行的(select不再阻塞等待channel)。
        select {
        case i :=             //use i
        default:
            //当c阻塞的时候执行这里
        }

六、超时
        有时候会出现goroutine阻塞的情况,可以利用select设置超时来避免整个程序进入阻塞状态,具体通过如下方式实现:
        func main() {
            c := make(chan int)
            c := make(chan bool)
            go func() {
                for {
                    select {
                        case v :=                             println(v)
                        case                         println("timeout")
                        o                         break
                    }
                }
            }()
                    }
        
七、runtime goroutine
        runtime包中有几个处理goroutine的函数。
        (1)Goexit
        退出当前执行的goroutine,但是defer函数还会继续调用。
        (2)Gosched
        让出当前goroutine的执行权限,调度器安排其它等待的任务运行,并在下次某个时候从该位置恢复执行。
        (3)NumCPU
        返回CPU核数量。
        (4)NumGoroutine
        返回正在执行和排队的任务总数。
        (5)GOMAXPROCS
        用来设置可以运行的CPU核数。







目录
相关文章
|
6月前
|
Go
浅谈Golang并发控制WaitGroup
浅谈Golang并发控制WaitGroup
53 0
|
存储 安全 编译器
Golang 语言中 map 的键值类型选择,它是并发安全的吗?
Golang 语言中 map 的键值类型选择,它是并发安全的吗?
66 0
|
2月前
|
安全 Go
Golang语言goroutine协程并发安全及锁机制
这篇文章是关于Go语言中多协程操作同一数据问题、互斥锁Mutex和读写互斥锁RWMutex的详细介绍及使用案例,涵盖了如何使用这些同步原语来解决并发访问共享资源时的数据安全问题。
78 4
|
6月前
|
Go
深度探讨 Golang 中并发发送 HTTP 请求的最佳技术
深度探讨 Golang 中并发发送 HTTP 请求的最佳技术
116 4
|
6月前
|
存储 缓存 安全
Golang深入浅出之-Go语言中的并发安全容器:sync.Map与sync.Pool
Go语言中的`sync.Map`和`sync.Pool`是并发安全的容器。`sync.Map`提供并发安全的键值对存储,适合快速读取和少写入的情况。注意不要直接遍历Map,应使用`Range`方法。`sync.Pool`是对象池,用于缓存可重用对象,减少内存分配。使用时需注意对象生命周期管理和容量控制。在多goroutine环境下,这两个容器能提高性能和稳定性,但需根据场景谨慎使用,避免不当操作导致的问题。
181 7
|
6月前
|
安全 Go 开发者
Golang深入浅出之-Go语言中的CSP模型:深入理解并发哲学
【5月更文挑战第2天】Go语言的并发编程基于CSP模型,强调通过通信共享内存。核心概念是goroutines(轻量级线程)和channels(用于goroutines间安全数据传输)。常见问题包括数据竞争、死锁和goroutine管理。避免策略包括使用同步原语、复用channel和控制并发。示例展示了如何使用channel和`sync.WaitGroup`避免死锁。理解并发原则和正确应用CSP模型是编写高效安全并发程序的关键。
150 7
|
6月前
|
安全 Go
Golang深入浅出之-Go语言中的并发安全队列:实现与应用
【5月更文挑战第3天】本文探讨了Go语言中的并发安全队列,它是构建高性能并发系统的基础。文章介绍了两种实现方法:1) 使用`sync.Mutex`保护的简单队列,通过加锁解锁确保数据一致性;2) 使用通道(Channel)实现无锁队列,天生并发安全。同时,文中列举了并发编程中常见的死锁、数据竞争和通道阻塞问题,并给出了避免这些问题的策略,如明确锁边界、使用带缓冲通道、优雅处理关闭以及利用Go标准库。
434 5
|
6月前
|
安全 Go 开发者
Golang深入浅出之-Go语言中的CSP模型:深入理解并发哲学
【5月更文挑战第1天】Go语言基于CSP理论,借助goroutines和channels实现独特的并发模型。Goroutine是轻量级线程,通过`go`关键字启动,而channels提供安全的通信机制。文章讨论了数据竞争、死锁和goroutine泄漏等问题及其避免方法,并提供了一个生产者消费者模型的代码示例。理解CSP和妥善处理并发问题对于编写高效、可靠的Go程序至关重要。
138 2
|
6月前
|
设计模式 Go 调度
Golang深入浅出之-Go语言中的并发模式:Pipeline、Worker Pool等
【5月更文挑战第1天】Go语言并发模拟能力强大,Pipeline和Worker Pool是常用设计模式。Pipeline通过多阶段处理实现高效并行,常见问题包括数据竞争和死锁,可借助通道和`select`避免。Worker Pool控制并发数,防止资源消耗,需注意任务分配不均和goroutine泄露,使用缓冲通道和`sync.WaitGroup`解决。理解和实践这些模式是提升Go并发性能的关键。
73 2
|
Go
Golang 语言怎么控制并发 goroutine?
Golang 语言怎么控制并发 goroutine?
40 0