PCL中点云数据格式之间的转化

简介: (1) 关于pcl::PCLPointCloud2::Ptr和pcl::PointCloud两中数据结构的区别pcl::PointXYZ::PointXYZ ( float_x, float_y, float_z ...

(1) 关于pcl::PCLPointCloud2::Ptr和pcl::PointCloud<pcl::PointXYZ>两中数据结构的区别

pcl::PointXYZ::PointXYZ ( float_x,
                  float_y,
                  float_z
                    ) 

区别:    

 struct PCLPointCloud2
 {
  PCLPointCloud2 () : header (), height (0), width (0), fields (),
 is_bigendian (false), point_step (0), row_step (0),
  data (), is_dense (false)
  {
 #if defined(BOOST_BIG_ENDIAN)
  is_bigendian = true;
 #elif defined(BOOST_LITTLE_ENDIAN)
  is_bigendian = false;
 #else
 #error "unable to determine system endianness"
 #endif
  }
 
  ::pcl::PCLHeader header;
 
  pcl::uint32_t height;
  pcl::uint32_t width;
 
  std::vector< ::pcl::PCLPointField> fields;
 
  pcl::uint8_t is_bigendian;
  pcl::uint32_t point_step;
  pcl::uint32_t row_step;
 
  std::vector<pcl::uint8_t> data;
 
  pcl::uint8_t is_dense;
 
  public:
  typedef boost::shared_ptr< ::pcl::PCLPointCloud2> Ptr;
  typedef boost::shared_ptr< ::pcl::PCLPointCloud2 const> ConstPtr;
  }; // struct PCLPointCloud2

那么要实现它们之间的数据转换,

举个例子

 pcl::PCLPointCloud2::Ptr cloud_blob (new pcl::PCLPointCloud2), cloud_filtered_blob (new pcl::PCLPointCloud2);//申明滤波前后的点云
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>), cloud_p (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);

  // 读取PCD文件
  pcl::PCDReader reader;
  reader.read ("table_scene_lms400.pcd", *cloud_blob);
   //统计滤波前的点云个数
  std::cerr << "PointCloud before filtering: " << cloud_blob->width * cloud_blob->height << " data points." << std::endl;

  // 创建体素栅格下采样: 下采样的大小为1cm
  pcl::VoxelGrid<pcl::PCLPointCloud2> sor;  //体素栅格下采样对象
  sor.setInputCloud (cloud_blob);             //原始点云
  sor.setLeafSize (0.01f, 0.01f, 0.01f);    // 设置采样体素大小
  sor.filter (*cloud_filtered_blob);        //保存

  // 转换为模板点云
  pcl::fromPCLPointCloud2 (*cloud_filtered_blob, *cloud_filtered);

  std::cerr << "PointCloud after filtering: " << cloud_filtered->width * cloud_filtered->height << " data points." << std::endl;

  // 保存下采样后的点云
  pcl::PCDWriter writer;
  writer.write<pcl::PointXYZ> ("table_scene_lms400_downsampled.pcd", *cloud_filtered, false);

程序中红色部分就是一句实现两者之间的数据转化的我们可以看出

cloud_filtered_blob 声明的数据格式为pcl::PCLPointCloud2::Ptr  cloud_filtered_blob (new pcl::PCLPointCloud2);
cloud_filtered 申明的数据格式  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>)

那么依照这种的命名风格我们可以查看到更多的关于的数据格式之间的转换的类的成员

(1)

   void pcl::fromPCLPointCloud(const pcl:PCLPointCloud2 & msg

                                                   pcl::PointCloud<PointT>  & cloud

                                                     const MsgFieldMap & filed_map

                                                     )

函数使用field_map实现将一个pcl::pointcloud2二进制数据blob到PCL::PointCloud<pointT>对象

使用 PCLPointCloud2 (PCLPointCloud2, PointCloud<T>)生成自己的 MsgFieldMap

MsgFieldMap field_map;
createMapping<PointT> (msg.fields, field_map);

(2)

void pcl::fromPCLPointCloud2(const pcl::PCLPointCloud & msg

                                                  pcl::PointCloud<pointT> &cloud

                                                  )

把pcl::PCLPointCloud数据格式的点云转化为pcl::PointCloud<pointT>格式

(3)

 void pcl::fromROSMsg(const pcl:PCLPointCloud2 & msg

                                 pcl::PointCloud<PointT>  & cloud

                                  const MsgFieldMap & filed_map

                                     )

(4)

 void pcl::fromROSMsg(const pcl:PCLPointCloud2 & msg

                                  pcl::PointCloud<PointT>  & cloud

                                     )

在使用fromROSMsg是一种在ROS 下的一种数据转化的作用,我们举个例子实现订阅使用kinect发布   /camera/depth/points  从程序中我们可以看到如何使用该函数实现数据的转换。并且我在程序中添加了如果使用PCL的库实现在ROS下调用并且可视化,

/************************************************
关于如何使用PCL在ROS 中,实现简单的数据转化
时间:2017.3.31

****************************************************/


#include <ros/ros.h>
// PCL specific includes
#include <sensor_msgs/PointCloud2.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>

#include <pcl/visualization/pcl_visualizer.h>
#include <boost/thread/thread.hpp>
#include <pcl/visualization/cloud_viewer.h>

ros::Publisher pub;
  

  pcl::visualization::CloudViewer viewer("Cloud Viewer");

void 
cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
{
 // 创建一个输出的数据格式
  sensor_msgs::PointCloud2 output;  //ROS中点云的数据格式
  //对数据进行处理
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZRGB>);

  output = *input;

    pcl::fromROSMsg(output,*cloud);

    
     //blocks until the cloud is actually rendered
    viewer.showCloud(cloud);
    

  pub.publish (output);
}



int
main (int argc, char** argv)
{ 


  // Initialize ROS
  ros::init (argc, argv, "my_pcl_tutorial");
  ros::NodeHandle nh;

  // Create a ROS subscriber for the input point cloud
  ros::Subscriber sub = nh.subscribe ("input", 1, cloud_cb);
   ros::Rate loop_rate(100);
  // Create a ROS publisher for the output point cloud
  pub = nh.advertise<sensor_msgs::PointCloud2> ("output", 1);
    

  

  // Spin
  ros::spin ();
/*
while (!viewer.wasStopped ())
    {

    } 
*/

 
}

那么对于这一段小程序实现了从发布的节点中转化为可以使用PCL的可视化函数实现可视化,并不一定要用RVIZ来实现,所以我们分析以下其中的步骤,在订阅话题的回调函数中,

void  cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)        //这里面设置了一个数据类型为sensor_msgs::PointCloud2ConstPtr& input形参
{
  sensor_msgs::PointCloud2 output;                                //ROS中点云的数据格式(或者说是发布话题点云的数据类型)
  pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZRGB>);     //对数据转换后存储的类型
  output = *input;
   pcl::fromROSMsg(output,*cloud);   //最重要的一步骤实现从ROS到PCL中的数据的转化,同时也可以直接使用PCL库实现可视化

  viewer.showCloud(cloud);  //PCL库的可视化
  pub.publish (output);     //那么原来的output的类型仍然是sensor_msgs::PointCloud2,可以通过RVIZ来可视化
}

那么也可以使用

  pcl::PCDWriter writer;
  writer.write<pcl::PointXYZ> ("ros_to_PCL.pcd", *cloud, false);

这一段代码来实现保存的作用。那么见到那看一下可视化的结果

使用pcl_viewer 可视化保存的PCD文件

可能写的比较乱,但是有用到关于PCL中点云数据类型的转换以及可视化等功能可以参考,同时欢迎有兴趣者扫描下方二维码或者QQ群

与我交流并且投稿,大家一起学习,共同进步与分享

  

相关实践学习
使用ROS创建VPC和VSwitch
本场景主要介绍如何利用阿里云资源编排服务,定义资源编排模板,实现自动化创建阿里云专有网络和交换机。
ROS入门实践
本课程将基于基础设施即代码 IaC 的理念,介绍阿里云自动化编排服务ROS的概念、功能和使用方式,并通过实际应用场景介绍如何借助ROS实现云资源的自动化部署,使得云上资源部署和运维工作更为高效。
相关文章
|
22天前
|
存储 运维 关系型数据库
从MySQL到云数据库,数据库迁移真的有必要吗?
本文探讨了企业在业务增长背景下,是否应从 MySQL 迁移至云数据库的决策问题。分析了 MySQL 的优势与瓶颈,对比了云数据库在存储计算分离、自动化运维、多负载支持等方面的优势,并提出判断迁移必要性的五个关键问题及实施路径,帮助企业理性决策并落地迁移方案。
|
6月前
|
存储 人工智能 关系型数据库
云数据库是什么数据库?
云数据库是部署在云计算环境中的数据库服务,用户无需自行搭建硬件和软件环境,通过互联网即可便捷使用。相比传统数据库,云数据库降低了成本和使用门槛,具备强大的扩展性和灵活性,支持多种数据存储模型,并借鉴了关系型数据库的特性如ACID事务处理。它能够应对海量数据和高并发访问需求,适应数字化时代的挑战,未来还将融合更多新技术,进一步提升其功能和应用范围。
430 2
|
运维 数据库 数据库管理
云数据库问题之阿里云在运营商领域数据库替换的整体解决方案要如何实现
云数据库问题之阿里云在运营商领域数据库替换的整体解决方案要如何实现
122 3
|
Oracle 数据管理 关系型数据库
云数据库问题之云计算的普及化对中国数据库厂商的全球化发展有什么影响
云数据库问题之云计算的普及化对中国数据库厂商的全球化发展有什么影响
122 2
|
6月前
|
安全 关系型数据库 数据库
课时2:阿里云数据库:帮用户承担一切数据库风险
阿里云Apsara DB是国内首个通过国家等保三级安全标准的数据库,具备十项国际安全认证。它提供稳定、可靠的在线数据库服务,支持多种主流数据库类型,如MySQL、SQL Server等,覆盖70%市场。基于飞天操作系统和全SSD存储,Apsara DB性能卓越,帮助企业解决运维难题,并提供免费热迁移、自动化运维及顶级DBA专家服务,确保数据安全与高效管理。
|
9月前
|
弹性计算 关系型数据库 数据库
自建数据库迁移到云数据库实操
本课程详细介绍了自建数据库迁移到阿里云RDS的实操步骤。主要内容包括:创建实例资源、安全设置、配置自建的MySQL数据库、数据库的迁移、从自建数据库切换到RDS以及清理资源。通过这些步骤,学员可以掌握如何将自建数据库安全、高效地迁移到云端,并确保应用的正常运行。
434 26
|
8月前
|
运维 关系型数据库 MySQL
体验领礼啦!体验自建数据库迁移到阿里云数据库RDS,领取桌面置物架!
「技术解决方案【Cloud Up 挑战赛】」上线!本方案介绍如何将自建数据库平滑迁移至云数据库RDS,解决业务增长带来的运维难题。通过使用RDS MySQL,您可获得稳定、可靠和安全的企业级数据库服务,专注于核心业务发展。完成任务即可领取桌面置物架,每个工作日限量50个,先到先得。
|
8月前
|
SQL 运维 关系型数据库
数据库自治服务DAS:云数据库高效运维的最佳拍档
数据库自治服务DAS是阿里云推出的高效运维解决方案,旨在简化复杂数据库管理。DAS基于机器学习和专家经验,提供自修复、自防护、自优化功能,涵盖多源数据库支持、丰富的应用场景及端到端运维能力。其企业版引入AI技术,实现智能诊断与优化,显著提升数据库稳定性、安全性和性能。通过自动化处理常见问题,如SQL优化、容量规划等,DAS大幅降低人工干预需求,缩短故障恢复时间,助力企业实现高效、智能化的数据库运维管理。
269 2
|
9月前
|
弹性计算 安全 关系型数据库
活动实践 | 自建数据库迁移到云数据库
通过阿里云RDS,用户可获得稳定、安全的企业级数据库服务,无需担心数据库管理与维护。该方案使用RDS确保数据库的可靠性、可用性和安全性,结合ECS和DTS服务,实现自建数据库平滑迁移到云端,支持WordPress等应用的快速部署与运行。通过一键部署模板,用户能迅速搭建ECS和RDS实例,完成数据迁移及应用上线,显著提升业务灵活性和效率。
|
9月前
|
运维 关系型数据库 MySQL
自建数据库迁移到云数据库RDS
本次课程由阿里云数据库团队的凡珂分享,主题为自建数据库迁移至云数据库RDS MySQL版。课程分为四部分:1) 传统数据库部署方案及痛点;2) 选择云数据库RDS MySQL的原因;3) 数据库迁移方案和产品选型;4) 线上活动与权益。通过对比自建数据库的局限性,介绍了RDS MySQL在可靠性、安全性、性价比等方面的优势,并详细讲解了使用DTS(数据传输服务)进行平滑迁移的步骤。此外,还提供了多种优惠活动信息,帮助用户降低成本并享受云数据库带来的便利。
217 6

热门文章

最新文章