PCL超体聚类

简介: 超体聚类是一种图像的分割方法。超体(supervoxel)是一种集合,集合的元素是“体”。与体素滤波器中的体类似,其本质是一个个的小方块。与大部分的分割手段不同,超体聚 类的目的并不是分割出某种特定物体,超体是对点云实施过分割(over segmentation),将场景点云化成很多小块,并研究每个小块之间的关系。

超体聚类是一种图像的分割方法。

超体(supervoxel)是一种集合,集合的元素是“体”。与体素滤波器中的体类似,其本质是一个个的小方块。与大部分的分割手段不同,超体聚 类的目的并不是分割出某种特定物体,超体是对点云实施过分割(over segmentation),将场景点云化成很多小块,并研究每个小块之间的关系。这种将更小单元合并的分割思路已经出现了有些年份了,在图像分割中,像 素聚类形成超像素,以超像素关系来理解图像已经广为研究。本质上这种方法是对局部的一种总结,纹理,材质,颜色类似的部分会被自动的分割成一块,有利于后 续识别工作。比如对人的识别,如果能将头发,面部,四肢,躯干分开,则能更好的对各种姿态,性别的人进行识别。

点云和图像不一样,其不存在像素邻接关系。所以,超体聚类之前,必须以八叉树对点云进行划分,获得不同点团之间的邻接关系。与图像相似点云的邻接关系也有很多,如面邻接,线邻接,点邻接。

超体聚类实际上是一种特殊的区域生长算法,和无限制的生长不同,超体聚类首先需要规律的布置区域生长“晶核”。晶核在空间中实际上是均匀分布的,并指定晶核距离(Rseed)。再指定粒子距离(Rvoxel)。再指定最小晶粒(MOV),过小的晶粒需要融入最近的大晶粒。

这些基本参数在接下来的参数中会有设置

#include <pcl/console/parse.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/segmentation/supervoxel_clustering.h>

//VTK include needed for drawing graph lines
#include <vtkPolyLine.h>

// 数据类型
typedef pcl::PointXYZRGBA PointT;
typedef pcl::PointCloud<PointT> PointCloudT;
typedef pcl::PointNormal PointNT;
typedef pcl::PointCloud<PointNT> PointNCloudT;
typedef pcl::PointXYZL PointLT;
typedef pcl::PointCloud<PointLT> PointLCloudT;

//可视化
void addSupervoxelConnectionsToViewer (PointT &supervoxel_center,
                                       PointCloudT &adjacent_supervoxel_centers,
                                       std::string supervoxel_name,
                                       boost::shared_ptr<pcl::visualization::PCLVisualizer> & viewer);


int
main (int argc, char ** argv)
{
//解析命令行
  if (argc < 2)
  {
    pcl::console::print_error ("Syntax is: %s <pcd-file> \n "
                                "--NT Dsables the single cloud transform \n"
                                "-v <voxel resolution>\n-s <seed resolution>\n"
                                "-c <color weight> \n-z <spatial weight> \n"
                                "-n <normal_weight>\n", argv[0]);
    return (1);
  }

  //打开点云
  PointCloudT::Ptr cloud = boost::shared_ptr <PointCloudT> (new PointCloudT ());
  pcl::console::print_highlight ("Loading point cloud...\n");
  if (pcl::io::loadPCDFile<PointT> (argv[1], *cloud))
  {
    pcl::console::print_error ("Error loading cloud file!\n");
    return (1);
  }


  bool disable_transform = pcl::console::find_switch (argc, argv, "--NT");

  float voxel_resolution = 0.008f;  //分辨率
  bool voxel_res_specified = pcl::console::find_switch (argc, argv, "-v");
  if (voxel_res_specified)
    pcl::console::parse (argc, argv, "-v", voxel_resolution);

  float seed_resolution = 0.1f;
  bool seed_res_specified = pcl::console::find_switch (argc, argv, "-s");
  if (seed_res_specified)
    pcl::console::parse (argc, argv, "-s", seed_resolution);

  float color_importance = 0.2f;
  if (pcl::console::find_switch (argc, argv, "-c"))
    pcl::console::parse (argc, argv, "-c", color_importance);

  float spatial_importance = 0.4f;
  if (pcl::console::find_switch (argc, argv, "-z"))
    pcl::console::parse (argc, argv, "-z", spatial_importance);

  float normal_importance = 1.0f;
  if (pcl::console::find_switch (argc, argv, "-n"))
    pcl::console::parse (argc, argv, "-n", normal_importance);

//如何使用SupervoxelClustering函数
  pcl::SupervoxelClustering<PointT> super (voxel_resolution, seed_resolution);
  if (disable_transform)//如果设置的是参数--NT  就用默认的参数
  super.setUseSingleCameraTransform (false);
  super.setInputCloud (cloud);
  super.setColorImportance (color_importance); //0.2f
  super.setSpatialImportance (spatial_importance); //0.4f
  super.setNormalImportance (normal_importance); //1.0f

  std::map <uint32_t, pcl::Supervoxel<PointT>::Ptr > supervoxel_clusters;

  pcl::console::print_highlight ("Extracting supervoxels!\n");
  super.extract (supervoxel_clusters);
  pcl::console::print_info ("Found %d supervoxels\n", supervoxel_clusters.size ());

  boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));
  viewer->setBackgroundColor (0, 0, 0);

  PointCloudT::Ptr voxel_centroid_cloud = super.getVoxelCentroidCloud ();//获得体素中心的点云
  viewer->addPointCloud (voxel_centroid_cloud, "voxel centroids");
  viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE,2.0, "voxel centroids");     //渲染点云
  viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_OPACITY,0.95, "voxel centroids");

  PointLCloudT::Ptr labeled_voxel_cloud = super.getLabeledVoxelCloud ();
  viewer->addPointCloud (labeled_voxel_cloud, "labeled voxels");
  viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_OPACITY,0.8, "labeled voxels");

  PointNCloudT::Ptr sv_normal_cloud = super.makeSupervoxelNormalCloud (supervoxel_clusters);

  //We have this disabled so graph is easy to see, uncomment to see supervoxel normals
  //viewer->addPointCloudNormals<PointNormal> (sv_normal_cloud,1,0.05f, "supervoxel_normals");

  pcl::console::print_highlight ("Getting supervoxel adjacency\n");

  std::multimap<uint32_t, uint32_t> supervoxel_adjacency;
  super.getSupervoxelAdjacency (supervoxel_adjacency);
  //To make a graph of the supervoxel adjacency, we need to iterate through the supervoxel adjacency multimap
  //为了使整个超体形成衣服图,我们需要遍历超体的每个临近的个体
  std::multimap<uint32_t,uint32_t>::iterator label_itr = supervoxel_adjacency.begin ();
  for ( ; label_itr != supervoxel_adjacency.end (); )
  {
    //First get the label
    uint32_t supervoxel_label = label_itr->first;
    //Now get the supervoxel corresponding to the label
    pcl::Supervoxel<PointT>::Ptr supervoxel = supervoxel_clusters.at (supervoxel_label);

    //Now we need to iterate through the adjacent supervoxels and make a point cloud of them
    PointCloudT adjacent_supervoxel_centers;
    std::multimap<uint32_t,uint32_t>::iterator adjacent_itr = supervoxel_adjacency.equal_range (supervoxel_label).first;
    for ( ; adjacent_itr!=supervoxel_adjacency.equal_range (supervoxel_label).second; ++adjacent_itr)
    {
      pcl::Supervoxel<PointT>::Ptr neighbor_supervoxel = supervoxel_clusters.at (adjacent_itr->second);
      adjacent_supervoxel_centers.push_back (neighbor_supervoxel->centroid_);
    }
    //Now we make a name for this polygon
    std::stringstream ss;
    ss << "supervoxel_" << supervoxel_label;
    //This function is shown below, but is beyond the scope of this tutorial - basically it just generates a "star" polygon mesh from the points given
//从给定的点云中生成一个星型的多边形,
    addSupervoxelConnectionsToViewer (supervoxel->centroid_, adjacent_supervoxel_centers, ss.str (), viewer);
    //Move iterator forward to next label
    label_itr = supervoxel_adjacency.upper_bound (supervoxel_label);
  }

  while (!viewer->wasStopped ())
  {
    viewer->spinOnce (100);
  }
  return (0);
}

//VTK可视化构成的聚类图
void
addSupervoxelConnectionsToViewer (PointT &supervoxel_center,
                                  PointCloudT &adjacent_supervoxel_centers,
                                  std::string supervoxel_name,
                                  boost::shared_ptr<pcl::visualization::PCLVisualizer> & viewer)
{
  vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New ();
  vtkSmartPointer<vtkCellArray> cells = vtkSmartPointer<vtkCellArray>::New ();
  vtkSmartPointer<vtkPolyLine> polyLine = vtkSmartPointer<vtkPolyLine>::New ();

  //Iterate through all adjacent points, and add a center point to adjacent point pair
  PointCloudT::iterator adjacent_itr = adjacent_supervoxel_centers.begin ();
  for ( ; adjacent_itr != adjacent_supervoxel_centers.end (); ++adjacent_itr)
  {
    points->InsertNextPoint (supervoxel_center.data);
    points->InsertNextPoint (adjacent_itr->data);
  }
  // Create a polydata to store everything in
  vtkSmartPointer<vtkPolyData> polyData = vtkSmartPointer<vtkPolyData>::New ();
  // Add the points to the dataset
  polyData->SetPoints (points);
  polyLine->GetPointIds  ()->SetNumberOfIds(points->GetNumberOfPoints ());
  for(unsigned int i = 0; i < points->GetNumberOfPoints (); i++)
    polyLine->GetPointIds ()->SetId (i,i);
  cells->InsertNextCell (polyLine);
  // Add the lines to the dataset
  polyData->SetLines (cells);
  viewer->addModelFromPolyData (polyData,supervoxel_name);
}

可执行文件生成后的图像显示如下

当然也可以自己设定参数生成自己想要的效果。同时在不同的场景中,使用的参数是十分重要的,

只是先了解超体的概念,如果想应用到实际的应用中,还需要很多其他的知识 ,所以这里只是基本的学习

有兴趣这关注我的微信公众号

相关文章
|
传感器 编解码 索引
|
数据可视化 算法
|
存储 算法
|
算法 计算机视觉
OpenCV 尺度不变特征检测:SIFT、SURF、BRISK、ORB
这个学期在上数字图像处理这门课。这门课没有考试,只有大作业,要求使用labwindows和NI Vision进行开发。我选的题目是全景图像的合成(图像拼接),其中要使用到一些特征点检测和匹配的算法。
3861 0
|
算法 数据挖掘 定位技术
PCL中分割方法的介绍(3)
(3)上两篇介绍了关于欧几里德分割,条件分割,最小分割法等等还有之前就有用RANSAC法的分割方法,这一篇是关于区域生成的分割法, 区 域生长的基本 思想是: 将具有相似性的像素集合起来构成区域。首先对每个需要分割的区域找出一个种子像素作为生长的起点,然后将种子像素周围邻域中与种子有相同或相似性质的像素 (根据事先确定的生长或相似准则来确定)合并到种子像素所在的区域中。
2278 0
|
编解码 数据可视化 数据挖掘
PCL特征点与配准(1)
关于输入一个具体的物体的点云,从场景中找出与该物体点云相匹配的,这种方法可以用来抓取指定的物体等等,具体的代码的解释如下,需要用到的一些基础的知识,在之前的博客中都有提及,其中用到的一些方法可以翻阅前面的博客,当然有问题可以关注公众号,与众多爱好者一起交流 具体的代码实现 #include #include //点云类型头文件 #include //对应表示两个实体之间的匹配(例如,点,描述符等)。
2463 0
|
存储 算法 数据可视化
PCL点云配准(1)
在逆向工程,计算机视觉,文物数字化等领域中,由于点云的不完整,旋转错位,平移错位等,使得要得到的完整的点云就需要对局部点云进行配准,为了得到被测物体的完整数据模型,需要确定一个合适的坐标系,将从各个视角得到的点集合并到统一的坐标系下形成一个完整的点云,然后就可以方便进行可视化的操作,这就是点云数据的配准。
2579 0
|
数据可视化 算法
PCL点云配准(2)
(1)正态分布变换进行配准(normal Distributions Transform) 介绍关于如何使用正态分布算法来确定两个大型点云之间的刚体变换,正态分布变换算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优匹配,因为其在配准的过程中不利用对应点的特征计算和匹配,所以时间比其他方法比较快, 对于代码的解析 /* 使用正态分布变换进行配准的实验 。
2311 0
|
存储 数据挖掘 索引
PCL点云分割(1)
点云分割是根据空间,几何和纹理等特征对点云进行划分,使得同一划分内的点云拥有相似的特征,点云的有效分割往往是许多应用的前提,例如逆向工作,CAD领域对零件的不同扫描表面进行分割,然后才能更好的进行空洞修复曲面重建,特征描述和提取,进而进行基于3D内容的检索,组合重用等。
2077 0
PCL点云分割(2)
关于点云的分割算是我想做的机械臂抓取中十分重要的俄一部分,所以首先学习如果使用点云库处理我用kinect获取的点云的数据,本例程也是我自己慢慢修改程序并结合官方API 的解说实现的,其中有很多细节如果直接更改源程序,可能会因为数据类型,或者头文件等各种原因编译不过,会导致我们比较难得找出其中的错误,...
1952 0
下一篇
无影云桌面