全面提升,阿里云 Docker / Kubernetes(K8S) 日志解决方案与选型对比

简介: 日志服务再次升级Kubernetes(K8S)的日志解决方案。1分钟内即可完成整个集群部署,支持动态扩容,提供采集宿主机日志、容器日志、容器stdout等所有数据源的一站式采集。

背景

众所周知,Docker很火,Docker中Kubernetes(简称K8S)最火。相对物理机、VM,Docker提供了更加简单、轻量、高性价比的部署与运维方法;而K8S在Docker之上,更进一步提供了对管理基础设施的抽象,形成了真正意义上的一站式部署与运维方案。

K8S提供了强有力工作调度、水平扩展、健康监测、维护高可用性等能力,同时提供了网络、文件系统的抽象与管理,所以对于已有应用上K8S或者基于K8S部署应用十分便捷。但这里有一部分令开发和运维人员比较头疼--日志采集。

难点分析

基于VM或者物理机部署的应用,日志采集相关技术都比较完善,有比较健全的Logstash、Fluentd、FileBeats等。但在Docker中,尤其在K8S中,日志采集并没有很好的解决方案,主要原因如下:

  1. 采集目标多:需要采集宿主机日志、容器内日志、容器stdout。针对每种数据源都有对应的采集软件,但缺乏一站式解决方案。
  2. 弹性伸缩难:K8S是一个分布式的集群,服务、环境的弹性伸缩对于日志采集带来了很大的困难,采集的动态性以及数据完整性是非常大的挑战。
  3. 运维成本大:现有的方案只能使用多种软件组合采集,各个软件组装起来的系统稳定性难以保障,且缺乏中心化的管理、配置、监控手段,运维负担巨大。
  4. 侵入性高:Docker Driver扩展需要修改底层引擎;一个Container对应一个采集Agent又会产生资源竞争和浪费。
  5. 采集性能低:正常情况下一个Docker Engine会运行数十个甚至数百个Container,此时开源Agent日志采集性能以及资源消耗十分堪忧。

基于阿里巴巴多年来容器服务日志采集的经验积累,并结合阿里云Kubernetes内测以来广大用户的反馈与诉求,现在,日志服务为K8S带来真正意义上的一站式日志解决方案。

技术方案

架构简介

image

如上图所示,我们只需要在Kubernetes集群中的每个节点上部署一个Logtail的容器,即可实现该节点上宿主机日志、容器日志、容器stdout等所有数据源的一站式采集。我们针对K8S提供了DaemonSet部署模板,1分钟内即可完成整个集群部署,并且后续集群动态伸缩无需对采集做任何二次部署。具体请参见使用方式章节。

日志服务客户端Logtail目前已有百万级部署,每天采集上万应用、数PB的数据,历经多次双11、双12考验。相关技术分享可以参见文章:多租户隔离技术+双十一实战效果Polling + Inotify 组合下的日志保序采集方案

依托阿里云日志服务强大的功能,对于采集到的日志数据,我们提供:

  1. 上下文查询,从茫茫数据中快速定位异常数据,并支持定位异常所在Container/Pod的上下文日志
  2. 实时的海量数据分析,1秒即可完成1亿条数据的统计分析
  3. 自带报表、告警功能,老板、开发、运维全搞定
  4. 流计算对接:storm、flink、blink、spark streaming等等都支持
  5. 外接可视化:Grafana、DataV轻松对接
  6. 日志归档投递:支持投递OSS归档存储,也支持投递MaxCompute进行离线分析

采集方案优势

关于日志服务整体的优势这里不再赘述,本文主要探讨日志服务Kubernetes采集方案的相关优势。这里我们主要总结了以下几点:
image

方案对比

相对Logstash、Fluentd主流日志采集方式,对比如下:
image

使用方式

image

部署K8S的日志采集只需分为3个步骤,1分钟内即可完成集群部署(详细帮助文档参见K8S采集帮助),这可能是你见过的最简单的K8S日志采集部署方案:

  1. 部署Logtail的DaemonSet。体力消耗:一条wget名,vi 修改3个参数,执行一条kubectl命令
  2. 日志服务控制台创建自定义标识机器组(后续集群动态伸缩无需额外操作)。体力消耗:web控制台点击几次,输入一个ID
  3. 日志服务控制台创建采集配置(所有采集均为服务端配置,无需本地运维)。体力消耗:stdout采集 web控制台点击几次;文件采集 web控制台点击几次,输入2个path

核心技术简介

自定义标识机器组

日志采集支持K8S弹性伸缩的关键就是Logtail的自定义标识机器组。通常采集Agent远程管理的方案都以IP或者hostname作为标识,此方案在集群规模较小以及环境变化性不强的情况下较为适用,当机器规模扩大、弹性伸缩成为常态时运维成本承指数级升高。

基于集团内数年来的Agent运维经验总结,我们设计了一种灵活性更高、使用更加便捷、耦合度更低的配置&机器管理方式:

image

  1. 机器组除支持静态ip设置外,也支持自定义标识的方式:所有Logtail只要定义了该标识则自动关联到对应的机器组。
  2. 一个Logtail可属于多个机器组,一个机器组可包含多个Logtail,实现Logtail与机器组的解耦。
  3. 一个采集配置可应用到多个机器组,一个机器组可关联多个采集配置,实现机器组与采集配置的解耦。

以上概念映射到K8S中,可实现各种灵活的配置:

  1. 一个K8S集群对应一个自定义标识的机器组。同一集群的Logtail使用相同配置,K8S集群伸缩时对应Logtail的DaemonSet自动伸缩,Logtail启动后立即就会获取和该机器组关联的所有配置。
  2. 一个K8S集群中配置多种不同采集配置。根据不同Pod需求设置对应的采集配置,所有涉及容器采集的配置均支持IncludeLabelExcluseLabel过滤
  3. 同一配置可应用到多个K8S集群。如果您有多个的K8S集群,若其中有部分服务日志采集逻辑相同,您可以将同一配置应用到多个集群,无需额外配置。

容器自动发现

Logtail和很多软件(Logspout、MetricBeats、Telegraf等)一样内置了容器的自动发现机制。当前开源的容器自动发现均采用一次扫描+事件监听的方式,即:初次运行时获取当前所有的容器信息,后续监听docker engine的事件信息,增量更新信息。

此种方式效率相对最高,但有一定概率遗漏部分信息:

  1. 获取所有容器信息到docker engine事件监听建立期间的这部分的增量信息会丢失
  2. 事件监听可能会因为某些异常情况而终止,终止后到监听重新建立期间的增量信息会丢失

image

考虑以上问题,Logtail采用了事件监听与定期全量扫描的方式实现容器的自动发现:

  1. 首先注册监听事件,其次再全量扫描
  2. 每隔一段时间执行一次全量扫描,全量更新meta信息(时间间隔高到对docker engine压力无影响)

容器文件自动渲染

容器日志采集只需要配置容器内的文件路径,并且支持各种采集模式:极简、Nginx模板、正则、分隔符、JSON等。相对传统的绝对路径采集,容器内日志采集动态性极强,为此我们专门实现了一套容器路径的自动匹配与配置渲染方案:

image.png

  1. Logtail会根据配置的容器路径,查找容器对应路径在宿主机上的映射关系
  2. 根据宿主机路径以及容器的元数据信息(container name、pod、namespace...)渲染出正常的采集配置
  3. Logtail文件采集模块加载渲染的配置并采集数据
  4. 当容器销毁时删除相应渲染的配置

可靠性保证

日志采集中的可靠性保证是非常重要也非常困难的工作。在Logtail的设计中,进程退出、异常终止、程序升级被认为是常态,在这些情况发生时Logtail需尽可能保证数据的可靠性。针对容器数据采集的动态特点,Logtail在之前可靠性保证的基础上,新增了容器标准输出以及容器文件的checkpoint维护机制

容器标准输出checkpoint管理

  1. 容器stdout和stderr的checkpoint独立保存
  2. checkpoint保存策略:定期dump所有容器当前的checkpoint;配置更新/进程退出时强制保存
  3. 配置加载时,默认从checkpoint处开始采集,若无checkpoint,则从5秒前采集
  4. 考虑到配置删除时并不会删除checkpoint,后台定期清除无效checkpoint

容器文件checkpoint管理

  1. 除文件采集的checkpoint需保存外,还需保存容器meta的映射关系
  2. checkpoint加载前需提前加载容器与文件之间的映射关系
  3. 考虑到停止期间无法感知容器状态变化,所以每次启动时会渲染所有当前的配置。Logtail保证多次加载同一容器配置的幂等性。

总结

阿里云日志服务提供的解决方案完美地解决了K8S上日志采集难的问题,从之前需要多个软件、几十个部署流程精简到1款软件、3个操作即可轻松上云,让广大用户真正体验到一个字:爽,从此日志运维人员的生活质量大大提高。

目前Logtail除支持宿主机文件、容器文件、容器stdout采集外,还支持以下多种采集方式(这些方式K8S中均支持):

  1. syslog采集
  2. Mysql binlog采集
  3. JDBC采集
  4. http采集

此外,Logtail即将推出Docker Event、Container Metric采集方式,敬请期待!

同志们有更多日志服务相关需求或问题请加钉钉群联系:

扫我进群

备注:本文作者元乙,点击移步原文链接

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
4月前
|
存储 Kubernetes 网络安全
关于阿里云 Kubernetes 容器服务(ACK)添加镜像仓库的快速说明
本文介绍了在中国大陆地区因网络限制无法正常拉取 Docker 镜像的解决方案。作者所在的阿里云 Kubernetes 集群使用的是较旧版本的 containerd(1.2x),且无法直接通过 SSH 修改节点配置,因此采用了一种无需更改 Kubernetes 配置文件的方法。通过为 `docker.io` 添加 containerd 的镜像源,并使用脚本自动修改 containerd 配置文件中的路径错误(将错误的 `cert.d` 改为 `certs.d`),最终实现了通过多个镜像站点拉取镜像。作者还提供了一个可重复运行的脚本,用于动态配置镜像源。虽然该方案能缓解镜像拉取问题,
572 2
|
7月前
|
Docker 容器
Docker网关冲突导致容器启动网络异常解决方案
当执行`docker-compose up`命令时,服务器网络可能因Docker创建新网桥导致IP段冲突而中断。原因是Docker默认的docker0网卡(172.17.0.1/16)与宿主机网络地址段重叠,引发路由异常。解决方法为修改docker0地址段,通过配置`/etc/docker/daemon.json`调整为非冲突段(如192.168.200.1/24),并重启服务。同时,在`docker-compose.yml`中指定网络模式为`bridge`,最后通过检查docker0地址、网络接口列表及测试容器启动验证修复效果。
1318 39
|
10月前
|
关系型数据库 MySQL 数据库连接
docker拉取MySQL后数据库连接失败解决方案
通过以上方法,可以解决Docker中拉取MySQL镜像后数据库连接失败的常见问题。关键步骤包括确保容器正确启动、配置正确的环境变量、合理设置网络和权限,以及检查主机防火墙设置等。通过逐步排查,可以快速定位并解决连接问题,确保MySQL服务的正常使用。
2102 82
|
8月前
|
自然语言处理 监控 安全
阿里云发布可观测MCP!支持自然语言查询和分析多模态日志
阿里云可观测官方发布了Observable MCP Server,提供了一系列访问阿里云可观测各产品的工具能力,包含阿里云日志服务SLS、阿里云应用实时监控服务ARMS等,支持用户通过自然语言形式查询
1207 0
阿里云发布可观测MCP!支持自然语言查询和分析多模态日志
|
10月前
|
存储 Kubernetes 监控
K8s集群实战:使用kubeadm和kuboard部署Kubernetes集群
总之,使用kubeadm和kuboard部署K8s集群就像回归童年一样,简单又有趣。不要忘记,技术是为人服务的,用K8s集群操控云端资源,我们不过是想在复杂的世界找寻简单。尽管部署过程可能遇到困难,但朝着简化复杂的目标,我们就能找到意义和乐趣。希望你也能利用这些工具,找到你的乐趣,满足你的需求。
978 33
|
10月前
|
Kubernetes Docker 容器
Kubernetes与Docker参数对照:理解Pod中的command、args与Dockerfile中的CMD、ENTRYPOINT。
需要明确的是,理解这些都需要对Docker和Kubernetes有一定深度的理解,才能把握二者的区别和联系。虽然它们都是容器技术的二个重要组成部分,但各有其特性和适用场景,理解它们的本质和工作方式,才能更好的使用这些工具,将各自的优点整合到生产环境中,实现软件的快速开发和部署。
421 25
|
10月前
|
存储 消息中间件 缓存
MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
基于阿里云SelectDB,MiniMax构建了覆盖国内及海外业务的日志可观测中台,总体数据规模超过数PB,日均新增日志写入量达数百TB。系统在P95分位查询场景下的响应时间小于3秒,峰值时刻实现了超过10GB/s的读写吞吐。通过存算分离、高压缩比算法和单副本热缓存等技术手段,MiniMax在优化性能的同时显著降低了建设成本,计算资源用量降低40%,热数据存储用量降低50%,为未来业务的高速发展和技术演进奠定了坚实基础。
477 1
MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
|
10月前
|
存储 人工智能 Kubernetes
ACK Gateway with AI Extension:面向Kubernetes大模型推理的智能路由实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with AI Extension组件,在Kubernetes环境中为大语言模型(LLM)推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
11月前
|
Cloud Native Serverless 数据中心
阿里云ACK One:注册集群支持ACS算力——云原生时代的计算新引擎
阿里云ACK One:注册集群支持ACS算力——云原生时代的计算新引擎
347 10
|
10月前
|
域名解析 应用服务中间件 网络安全
阿里云个人博客外网访问中断应急指南:从安全组到日志的七步排查法
1. 检查安全组配置:确认阿里云安全组已开放HTTP/HTTPS端口,添加规则允许目标端口(如80/443),授权对象设为`0.0.0.0/0`。 2. 本地防火墙设置:确保服务器防火墙未阻止外部流量,Windows启用入站规则,Linux检查iptables或临时关闭防火墙测试。 3. 验证Web服务状态:检查Apache/Nginx/IIS是否运行并监听所有IP,使用命令行工具确认监听状态。 4. 测试网络连通性:使用外部工具和内网工具测试服务器端口是否开放,排除本地可访问但外网不可的问题。 5. 排查DNS解析:确认域名A记录指向正确公网IP,使用`ping/nslookup`验证解析正
399 2

相关产品

  • 容器服务Kubernetes版