Socket编程实践(4) --多进程并发server

简介: 1.Socket地址复用int getsockopt(int sockfd, int level, int optname, void *optval, so...

1.Socket地址复用

int getsockopt(int sockfd, int level, int optname,
               void *optval, socklen_t *optlen);
int setsockopt(int sockfd, int level, int optname,
               const void *optval, socklen_t optlen);

服务端尽可能使用SO_REUSEADDR,在绑定之前尽可能调用setsockopt来设置SO_REUSEADDR套接字选项。该选项可以使得server不必等待TIME_WAIT状态消失就可以重启服务器(对于TIME_WAIT状态会在后面续有叙述).

可以在bind之前添加代码(完整代码请参照博文最后):

    int on = 1;
    if (setsockopt(listenfd,SOL_SOCKET,SO_REUSEADDR,
                   &on,sizeof(on)) == -1)
        err_exit("setsockopt SO_REUSEADDR error");

用以支持地址复用.

 

2.process-per-connecton

我们的echo服务器最大的缺点就是无法支持多客户连接,即使客户端能够连接到服务器上(client端connect时并没有出错返回), 服务器也不为该客户做服务,(直接没什么反应),虽然链接是有的(也就是说,客户端是已经连接到服务器上的了,但是服务器就是不搭理你....), 我们提出的改进方案是process-per-connection(一条连接一个进程, 我们在多线程那一章中曾经提出过一条连接一个线程, 这种方案相比较而言能够比多进程拥有更高的并发量);

/** 示例:echo server改进, 多进程模型(client并未更改)**/
void echo(int clientfd);
int main()
{
    int listenfd = socket(AF_INET, SOCK_STREAM, 0);
    if (listenfd == -1)
        err_exit("socket error");
    int on = 1;
    if (setsockopt(listenfd,SOL_SOCKET,SO_REUSEADDR,
                   &on,sizeof(on)) == -1)
        err_exit("setsockopt SO_REUSEADDR error");

    struct sockaddr_in addr;
    addr.sin_family = AF_INET;
    addr.sin_port = htons(8001);
    addr.sin_addr.s_addr = htonl(INADDR_ANY);
    if (bind(listenfd, (const struct sockaddr *)&addr, sizeof(addr)) == -1)
        err_exit("bind error");
    if (listen(listenfd, SOMAXCONN) == -1)
        err_exit("listen error");

    struct sockaddr_in clientAddr;
    //谨记: 此处一定要初始化
    socklen_t addrLen = sizeof(clientAddr);
    while (true)
    {
        int clientfd = accept(listenfd, (struct sockaddr *)&clientAddr, &addrLen);
        if (clientfd == -1)
            err_exit("accept error");
        //打印客户IP地址与端口号
        cout << "Client information: " << inet_ntoa(clientAddr.sin_addr)
             << ", " << ntohs(clientAddr.sin_port) << endl;

        pid_t pid = fork();
        if (pid == -1)
            err_exit("fork error");
        else if (pid > 0)
            close(clientfd);
        //子进程处理链接
        else if (pid == 0)
        {
            close(listenfd);
            echo(clientfd);
            //子进程一定要exit, 否则的话, 该子进程也会回到accept处
            exit(EXIT_SUCCESS);
        }
    }
    close(listenfd);
}
void echo(int clientfd)
{
    char buf[512] = {0};
    int readBytes;
    while ((readBytes = read(clientfd, buf, sizeof(buf))) > 0)
    {
        cout << buf;
        if (write(clientfd, buf, readBytes) == -1)
            err_exit("write socket error");
        memset(buf, 0, sizeof(buf));
    }
    if (readBytes == 0)
    {
        cerr << "client connect closed..." << endl;
        close(clientfd);
    }
    else if (readBytes == -1)
        err_exit("read socket error");
}

完整代码实现:

http://download.csdn.net/detail/hanqing280441589/8458053

 

3. P2P聊天程序设计与实现

server端与client都有两个进程:

    (1)父进程负责从socket中读取数据将其写至终端, 由于父进程使用的是read系统调用的阻塞版本, 因此如果socket中没有数据的话, 父进程会一直阻塞; 如果read返回0, 表示对端连接关闭, 则父进程会发送SIGUSR1信号给子进程, 通知其退出;

    (2)子进程负责从键盘读取数据将其写入socket, 如果键盘没有数据的话, 则fgets调用会一直阻塞;

//serever端代码与说明
int main()
{
    int listenfd = socket(AF_INET, SOCK_STREAM, 0);
    if (listenfd == -1)
        err_exit("socket error");
    int on = 1;
    if (setsockopt(listenfd,SOL_SOCKET,SO_REUSEADDR,
                   &on,sizeof(on)) == -1)
        err_exit("setsockopt SO_REUSEADDR error");

    struct sockaddr_in addr;
    addr.sin_family = AF_INET;
    addr.sin_port = htons(8001);
    addr.sin_addr.s_addr = htonl(INADDR_ANY);
    if (bind(listenfd, (const struct sockaddr *)&addr, sizeof(addr)) == -1)
        err_exit("bind error");
    if (listen(listenfd, SOMAXCONN) == -1)
        err_exit("listen error");

    struct sockaddr_in clientAddr;
    socklen_t addrLen = sizeof(clientAddr);
    int clientfd = accept(listenfd, (struct sockaddr *)&clientAddr, &addrLen);
    if (clientfd == -1)
        err_exit("accept error");
    close(listenfd);
    //打印客户IP地址与端口号
    cout << "Client information: " << inet_ntoa(clientAddr.sin_addr)
         << ", " << ntohs(clientAddr.sin_port) << endl;

    char buf[512] = {0};
    pid_t pid = fork();
    if (pid == -1)
        err_exit("fork error");
    //父进程: socket -> terminal
    else if (pid > 0)
    {
        int readBytes;
        while ((readBytes = read(clientfd, buf, sizeof(buf))) > 0)
        {
            cout << buf;
            memset(buf, 0, sizeof(buf));
        }
        if (readBytes == 0)
            cout << "client connect closed...\nserver exiting..." << endl;
        else if (readBytes == -1)
            err_exit("read socket error");
        //通知子进程退出
        kill(pid, SIGUSR1);
    }
    //子进程: keyboard -> socket
    else if (pid == 0)
    {
        signal(SIGUSR1, sigHandler);
        while (fgets(buf, sizeof(buf), stdin) != NULL)
        {
            if (write(clientfd, buf, strlen(buf)) == -1)
                err_exit("write socket error");
            memset(buf, 0, sizeof(buf));
        }
    }
    close(clientfd);
    exit(EXIT_SUCCESS);
}
//client端代码与说明
int main()
{
    int sockfd = socket(AF_INET, SOCK_STREAM, 0);
    if (sockfd == -1)
        err_exit("socket error");

    //填写服务器端口号与IP地址
    struct sockaddr_in serverAddr;
    serverAddr.sin_family = AF_INET;
    serverAddr.sin_port = htons(8001);
    serverAddr.sin_addr.s_addr = inet_addr("127.0.0.1");
    if (connect(sockfd, (const struct sockaddr *)&serverAddr, sizeof(serverAddr)) == -1)
        err_exit("connect error");

    char buf[512] = {0};
    pid_t pid = fork();
    if (pid == -1)
        err_exit("fork error");
    //父进程: socket -> terminal
    else if (pid > 0)
    {
        int readBytes;
        while ((readBytes = read(sockfd, buf, sizeof(buf))) > 0)
        {
            cout << buf;
            memset(buf, 0, sizeof(buf));
        }
        if (readBytes == 0)
            cout << "server connect closed...\nclient exiting..." << endl;
        else if (readBytes == -1)
            err_exit("read socket error");
        kill(pid, SIGUSR1);
    }
    //子进程: keyboard -> socket
    else if (pid == 0)
    {
        signal(SIGUSR1, sigHandler);
        while (fgets(buf, sizeof(buf), stdin) != NULL)
        {
            if (write(sockfd, buf, strlen(buf)) == -1)
                err_exit("write socket error");
            memset(buf, 0, sizeof(buf));
        }
    }
    close(sockfd);
    exit(EXIT_SUCCESS);
}

完整代码实现:

http://download.csdn.net/detail/hanqing280441589/8460013

目录
相关文章
|
3月前
|
安全 Python
告别低效编程!Python线程与进程并发技术详解,让你的代码飞起来!
【7月更文挑战第9天】Python并发编程提升效率:**理解并发与并行,线程借助`threading`模块处理IO密集型任务,受限于GIL;进程用`multiprocessing`实现并行,绕过GIL限制。示例展示线程和进程创建及同步。选择合适模型,注意线程安全,利用多核,优化性能,实现高效并发编程。
68 3
|
3月前
|
Python
解锁Python并发新世界:线程与进程的并行艺术,让你的应用性能翻倍!
【7月更文挑战第9天】并发编程**是同时执行多个任务的技术,提升程序效率。Python的**threading**模块支持多线程,适合IO密集型任务,但受GIL限制。**multiprocessing**模块允许多进程并行,绕过GIL,适用于CPU密集型任务。例如,计算平方和,多线程版本使用`threading`分割工作并同步结果;多进程版本利用`multiprocessing.Pool`分块计算再合并。正确选择能优化应用性能。
35 1
|
4月前
|
Java
Java Socket编程与多线程:提升客户端-服务器通信的并发性能
【6月更文挑战第21天】Java网络编程中,Socket结合多线程提升并发性能,服务器对每个客户端连接启动新线程处理,如示例所示,实现每个客户端的独立操作。多线程利用多核处理器能力,避免串行等待,提升响应速度。防止死锁需减少共享资源,统一锁定顺序,使用超时和重试策略。使用synchronized、ReentrantLock等维持数据一致性。多线程带来性能提升的同时,也伴随复杂性和挑战。
93 0
|
1月前
|
算法 调度 UED
操作系统中的进程管理:原理与实践
在数字世界的心脏跳动着无数进程,它们如同细胞一般构成了操作系统的生命体。本文将深入探讨进程管理的奥秘,从进程的诞生到成长,再到最终的消亡,揭示操作系统如何协调这些看似杂乱无章却又井然有序的活动。通过浅显易懂的语言和直观的比喻,我们将一起探索进程调度的策略、同步机制的重要性以及死锁问题的解决之道。准备好跟随我们的脚步,一起走进操作系统的微观世界,解锁进程管理的秘密吧!
54 6
|
2月前
|
人工智能 PyTorch 算法框架/工具
Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
【8月更文挑战第6天】Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
|
1月前
|
网络协议 C语言
C语言 网络编程(十三)并发的TCP服务端-以进程完成功能
这段代码实现了一个基于TCP协议的多进程并发服务端和客户端程序。服务端通过创建子进程来处理多个客户端连接,解决了粘包问题,并支持不定长数据传输。客户端则循环发送数据并接收服务端回传的信息,同样处理了粘包问题。程序通过自定义的数据长度前缀确保了数据的完整性和准确性。
|
27天前
|
数据采集 消息中间件 并行计算
进程、线程与协程:并发执行的三种重要概念与应用
进程、线程与协程:并发执行的三种重要概念与应用
47 0
|
1月前
|
C语言
C语言 网络编程(八)并发的UDP服务端 以进程完成功能
这段代码展示了如何使用多进程处理 UDP 客户端和服务端通信。客户端通过发送登录请求与服务端建立连接,并与服务端新建的子进程进行数据交换。服务端则负责接收请求,验证登录信息,并创建子进程处理客户端的具体请求。子进程会创建一个新的套接字与客户端通信,实现数据收发功能。此方案有效利用了多进程的优势,提高了系统的并发处理能力。
|
2月前
|
算法 Java
JUC(1)线程和进程、并发和并行、线程的状态、lock锁、生产者和消费者问题
该博客文章综合介绍了Java并发编程的基础知识,包括线程与进程的区别、并发与并行的概念、线程的生命周期状态、`sleep`与`wait`方法的差异、`Lock`接口及其实现类与`synchronized`关键字的对比,以及生产者和消费者问题的解决方案和使用`Condition`对象替代`synchronized`关键字的方法。
JUC(1)线程和进程、并发和并行、线程的状态、lock锁、生产者和消费者问题
|
2月前
|
监控 算法 调度
探索操作系统中的进程管理:从理论到实践
【8月更文挑战第30天】在数字世界的心脏,操作系统扮演着至关重要的角色。它不仅管理着硬件资源,还确保了软件的顺畅运行。本文将深入探讨操作系统中的一项核心功能——进程管理。我们将从基本概念出发,逐步深入到进程状态、调度算法,以及进程同步机制。通过实际代码示例,我们将看到理论如何转化为实践中的具体操作,从而更好地理解进程管理的精妙之处。无论你是初学者还是有一定基础的开发者,这篇文章都将为你揭开操作系统进程管理的神秘面纱。

相关实验场景

更多