JVM初探- 使用堆外内存减少Full GC

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: JVM初探-使用堆外内存减少Full GC标签 : JVM 问题: 大部分主流互联网企业线上Server JVM选用了CMS收集器(如Taobao、LinkedIn、Vdian...

JVM初探-使用堆外内存减少Full GC

标签 : JVM


问题: 大部分主流互联网企业线上Server JVM选用了CMS收集器(如Taobao、LinkedIn、Vdian), 虽然CMS可与用户线程并发GC以降低STW时间, 但它也并非十分完美, 尤其是当出现Concurrent Mode Failure由并行GC转入串行时, 将导致非常长时间的Stop The World(详细可参考JVM初探- 内存分配、GC原理与垃圾收集器).

解决: 由GCIH可以联想到: 将长期存活的对象(如Local Cache)移入堆外内存(off-heap, 又名直接内存/direct-memory), 从而减少CMS管理的对象数量, 以降低Full GC的次数和频率, 达到提高系统响应速度的目的.


引入

这个idea最初来源于TaobaoJVM对OpenJDK定制开发的GCIH部分(详见撒迦的分享-JVM定制改进@淘宝), 其中GCIH就是将CMS Old Heap区的一部分划分出来, 这部分内存虽然还在堆内, 但已不被GC所管理.将长生命周期Java对象放在Java堆外, GC不能管理GCIH内Java对象(GC Invisible Heap):

(图片来源: JVM@Taobao PPT)

  • 这样做有两方面的好处:
    1. 减少GC管理内存:
      由于GCIH会从Old区“切出”一块, 因此导致GC管理区域变小, 可以明显降低GC工作量, 提高GC效率, 降低Full GC STW时间(且由于这部分内存仍属于堆, 因此其访问方式/速度不变- 不必付出序列化/反序列化的开销).
    2. GCIH内容进程间共享:
      由于这部分区域不再是JVM运行时数据的一部分, 因此GCIH内的对象可供对个JVM实例所共享(如一台Server跑多个MR-Job可共享同一份Cache数据), 这样一台Server也就可以跑更多的VM实例.

(实际测试数据/图示可下载撒迦分享PPT).

但是大部分的互联公司不能像阿里这样可以有专门的工程师针对自己的业务特点定制JVM, 因此我们只能”眼馋”GCIH带来的性能提升却无法”享用”. 但通用的JVM开放了接口可直接向操作系统申请堆外内存(ByteBuffer or Unsafe), 而这部分内存也是GC所顾及不到的, 因此我们可用JVM堆外内存来模拟GCIH的功能(但相比GCIH不足的是需要付出serialize/deserialize的开销).


JVM堆外内存

JVM初探 -JVM内存模型一文中介绍的Java运行时数据区域中是找不到堆外内存区域的:

因为它并不是JVM运行时数据区的一部分, 也不是Java虚拟机规范中定义的内存区域, 这部分内存区域直接被操作系统管理.
在JDK 1.4以前, 对这部分内存访问没有光明正大的做法: 只能通过反射拿到Unsafe类, 然后调用allocateMemory()/freeMemory()来申请/释放这块内存. 1.4开始新加入了NIO, 它引入了一种基于Channel与Buffer的I/O方式, 可以使用Native函数库直接分配堆外内存, 然后通过一个存储在Java堆里面的DirectByteBuffer对象作为这块内存的引用进行操作, ByteBuffer提供了如下常用方法来跟堆外内存打交道:

API 描述
static ByteBuffer allocateDirect(int capacity) Allocates a new direct byte buffer.
ByteBuffer put(byte b) Relative put method (optional operation).
ByteBuffer put(byte[] src) Relative bulk put method (optional operation).
ByteBuffer putXxx(Xxx value) Relative put method for writing a Char/Double/Float/Int/Long/Short value (optional operation).
ByteBuffer get(byte[] dst) Relative bulk get method.
Xxx getXxx() Relative get method for reading a Char/Double/Float/Int/Long/Short value.
XxxBuffer asXxxBuffer() Creates a view of this byte buffer as a Char/Double/Float/Int/Long/Short buffer.
ByteBuffer asReadOnlyBuffer() Creates a new, read-only byte buffer that shares this buffer’s content.
boolean isDirect() Tells whether or not this byte buffer is direct.
ByteBuffer duplicate() Creates a new byte buffer that shares this buffer’s content.

下面我们就用通用的JDK API来使用堆外内存来实现一个local cache.


示例1.: 使用JDK API实现堆外Cache

注: 主要逻辑都集中在方法invoke()内, 而AbstractAppInvoker是一个自定义的性能测试框架, 在后面会有详细的介绍.

/**
 * @author jifang
 * @since 2016/12/31 下午6:05.
 */
public class DirectByteBufferApp extends AbstractAppInvoker {

    @Test
    @Override
    public void invoke(Object... param) {
        Map<String, FeedDO> map = createInHeapMap(SIZE);

        // move in off-heap
        byte[] bytes = serializer.serialize(map);
        ByteBuffer buffer = ByteBuffer.allocateDirect(bytes.length);
        buffer.put(bytes);
        buffer.flip();

        // for gc
        map = null;
        bytes = null;
        System.out.println("write down");
        // move out from off-heap
        byte[] offHeapBytes = new byte[buffer.limit()];
        buffer.get(offHeapBytes);
        Map<String, FeedDO> deserMap = serializer.deserialize(offHeapBytes);
        for (int i = 0; i < SIZE; ++i) {
            String key = "key-" + i;
            FeedDO feedDO = deserMap.get(key);
            checkValid(feedDO);

            if (i % 10000 == 0) {
                System.out.println("read " + i);
            }
        }

        free(buffer);
    }

    private Map<String, FeedDO> createInHeapMap(int size) {
        long createTime = System.currentTimeMillis();

        Map<String, FeedDO> map = new ConcurrentHashMap<>(size);
        for (int i = 0; i < size; ++i) {
            String key = "key-" + i;
            FeedDO value = createFeed(i, key, createTime);
            map.put(key, value);
        }

        return map;
    }
}

由JDK提供的堆外内存访问API只能申请到一个类似一维数组的ByteBuffer, JDK并未提供基于堆外内存的实用数据结构实现(如堆外的MapSet), 因此想要实现Cache的功能只能在write()时先将数据put()到一个堆内的HashMap, 然后再将整个Map序列化后MoveInDirectMemory, 取缓存则反之. 由于需要在堆内申请HashMap, 因此可能会导致多次Full GC. 这种方式虽然可以使用堆外内存, 但性能不高、无法发挥堆外内存的优势.
幸运的是开源界的前辈开发了诸如EhcacheMapDBChronicle Map等一系列优秀的堆外内存框架, 使我们可以在使用简洁API访问堆外内存的同时又不损耗额外的性能.

其中又以Ehcache最为强大, 其提供了in-heap、off-heap、on-disk、cluster四级缓存, 且Ehcache企业级产品(BigMemory Max / BigMemory Go)实现的BigMemory也是Java堆外内存领域的先驱.


示例2: MapDB API实现堆外Cache

public class MapDBApp extends AbstractAppInvoker {

    private static HTreeMap<String, FeedDO> mapDBCache;

    static {
        mapDBCache = DBMaker.hashMapSegmentedMemoryDirect()
                .expireMaxSize(SIZE)
                .make();
    }

    @Test
    @Override
    public void invoke(Object... param) {

        for (int i = 0; i < SIZE; ++i) {
            String key = "key-" + i;
            FeedDO feed = createFeed(i, key, System.currentTimeMillis());

            mapDBCache.put(key, feed);
        }

        System.out.println("write down");
        for (int i = 0; i < SIZE; ++i) {
            String key = "key-" + i;
            FeedDO feedDO = mapDBCache.get(key);
            checkValid(feedDO);

            if (i % 10000 == 0) {
                System.out.println("read " + i);
            }
        }
    }
}

结果 & 分析

  • DirectByteBufferApp
 S0     S1     E      O      P     YGC     YGCT    FGC    FGCT     GCT
0.00   0.00   5.22  78.57  59.85     19    2.902    13    7.251   10.153
  • the last one jstat of MapDBApp
 S0     S1     E      O      P     YGC     YGCT    FGC    FGCT     GCT
0.00   0.03   8.02   0.38  44.46    171    0.238     0    0.000    0.238

运行DirectByteBufferApp.invoke()会发现有看到很多Full GC的产生, 这是因为HashMap需要一个很大的连续数组, Old区很快就会被占满, 因此也就导致频繁Full GC的产生.
而运行MapDBApp.invoke()可以看到有一个DirectMemory持续增长的过程, 但FullGC却一次都没有了.


实验: 使用堆外内存减少Full GC

实验环境

  • java -version
java version "1.7.0_79"
Java(TM) SE Runtime Environment (build 1.7.0_79-b15)
Java HotSpot(TM) 64-Bit Server VM (build 24.79-b02, mixed mode)
  • VM Options
-Xmx512M
-XX:MaxDirectMemorySize=512M
-XX:+PrintGC
-XX:+UseConcMarkSweepGC
-XX:+CMSClassUnloadingEnabled
-XX:CMSInitiatingOccupancyFraction=80
-XX:+UseCMSInitiatingOccupancyOnly
  • 实验数据
    170W条动态(FeedDO).

实验代码

第1组: in-heap、affect by GC、no serialize

  • ConcurrentHashMapApp
public class ConcurrentHashMapApp extends AbstractAppInvoker {

    private static final Map<String, FeedDO> cache = new ConcurrentHashMap<>();

    @Test
    @Override
    public void invoke(Object... param) {

        // write
        for (int i = 0; i < SIZE; ++i) {
            String key = String.format("key_%s", i);
            FeedDO feedDO = createFeed(i, key, System.currentTimeMillis());
            cache.put(key, feedDO);
        }

        System.out.println("write down");
        // read
        for (int i = 0; i < SIZE; ++i) {
            String key = String.format("key_%s", i);
            FeedDO feedDO = cache.get(key);
            checkValid(feedDO);

            if (i % 10000 == 0) {
                System.out.println("read " + i);
            }
        }
    }
}

GuavaCacheApp类似, 详细代码可参考完整项目.


第2组: off-heap、not affect by GC、need serialize

  • EhcacheApp
public class EhcacheApp extends AbstractAppInvoker {

    private static Cache<String, FeedDO> cache;

    static {
        ResourcePools resourcePools = ResourcePoolsBuilder.newResourcePoolsBuilder()
                .heap(1000, EntryUnit.ENTRIES)
                .offheap(480, MemoryUnit.MB)
                .build();

        CacheConfiguration<String, FeedDO> configuration = CacheConfigurationBuilder
                .newCacheConfigurationBuilder(String.class, FeedDO.class, resourcePools)
                .build();

        cache = CacheManagerBuilder.newCacheManagerBuilder()
                .withCache("cacher", configuration)
                .build(true)
                .getCache("cacher", String.class, FeedDO.class);

    }

    @Test
    @Override
    public void invoke(Object... param) {
        for (int i = 0; i < SIZE; ++i) {
            String key = String.format("key_%s", i);
            FeedDO feedDO = createFeed(i, key, System.currentTimeMillis());
            cache.put(key, feedDO);
        }

        System.out.println("write down");
        // read
        for (int i = 0; i < SIZE; ++i) {
            String key = String.format("key_%s", i);
            Object o = cache.get(key);
            checkValid(o);

            if (i % 10000 == 0) {
                System.out.println("read " + i);
            }
        }
    }
}

MapDBApp与前同.


第3组: off-process、not affect by GC、serialize、affect by process communication

  • LocalRedisApp
public class LocalRedisApp extends AbstractAppInvoker {

    private static final Jedis cache = new Jedis("localhost", 6379);

    private static final IObjectSerializer serializer = new Hessian2Serializer();

    @Test
    @Override
    public void invoke(Object... param) {
        // write
        for (int i = 0; i < SIZE; ++i) {
            String key = String.format("key_%s", i);
            FeedDO feedDO = createFeed(i, key, System.currentTimeMillis());

            byte[] value = serializer.serialize(feedDO);
            cache.set(key.getBytes(), value);

            if (i % 10000 == 0) {
                System.out.println("write " + i);
            }
        }

        System.out.println("write down");
        // read
        for (int i = 0; i < SIZE; ++i) {
            String key = String.format("key_%s", i);
            byte[] value = cache.get(key.getBytes());
            FeedDO feedDO = serializer.deserialize(value);
            checkValid(feedDO);

            if (i % 10000 == 0) {
                System.out.println("read " + i);
            }
        }
    }
}

RemoteRedisApp类似, 详细代码可参考下面完整项目.


实验结果

* ConcurrentMap Guava
TTC 32166ms/32s 47520ms/47s
Minor C/T 31/1.522 29/1.312
Full C/T 24/23.212 36/41.751
MapDB Ehcache
TTC 40272ms/40s 30814ms/31s
Minor C/T 511/0.557 297/0.430
Full C/T 0/0.000 0/0.000
LocalRedis NetworkRedis
TTC 176382ms/176s 1h+
Minor C/T 421/0.415 -
Full C/T 0/0.000 -

备注:
- TTC: Total Time Cost 总共耗时
- C/T: Count/Time 次数/耗时(seconds)


结果分析

对比前面几组数据, 可以有如下总结:

  • 将长生命周期的大对象(如cache)移出heap可大幅度降低Full GC次数与耗时;
  • 使用off-heap存储对象需要付出serialize/deserialize成本;
  • 将cache放入分布式缓存需要付出进程间通信/网络通信的成本(UNIX Domain/TCP IP)

附:
off-heap的Ehcache能够跑出比in-heap的HashMap/Guava更好的成绩确实是我始料未及的O(∩_∩)O~, 但确实这些数据和堆内存的搭配导致in-heap的Full GC太多了, 当heap堆开大之后就肯定不是这个结果了. 因此在使用堆外内存降低Full GC前, 可以先考虑是否可以将heap开的更大.


附: 性能测试框架

在main函数启动时, 扫描com.vdian.se.apps包下的所有继承了AbstractAppInvoker的类, 然后使用Javassist为每个类生成一个代理对象: 当invoke()方法执行时首先检查他是否标注了@Test注解(在此, 我们借用junit定义好了的注解), 并在执行的前后记录方法执行耗时, 并最终对比每个实现类耗时统计.

  • 依赖
<dependency>
    <groupId>org.apache.commons</groupId>
    <artifactId>commons-proxy</artifactId>
    <version>${commons.proxy.version}</version>
</dependency>
<dependency>
    <groupId>org.javassist</groupId>
    <artifactId>javassist</artifactId>
    <version>${javassist.version}</version>
</dependency>
<dependency>
    <groupId>com.caucho</groupId>
    <artifactId>hessian</artifactId>
    <version>${hessian.version}</version>
</dependency>
<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>${guava.version}</version>
</dependency>
<dependency>
    <groupId>junit</groupId>
    <artifactId>junit</artifactId>
    <version>${junit.version}</version>
</dependency>

启动类: OffHeapStarter

/**
 * @author jifang
 * @since 2017/1/1 上午10:47.
 */
public class OffHeapStarter {

    private static final Map<String, Long> STATISTICS_MAP = new HashMap<>();

    public static void main(String[] args) throws IOException, IllegalAccessException, InstantiationException {
        Set<Class<?>> classes = PackageScanUtil.scanPackage("com.vdian.se.apps");
        for (Class<?> clazz : classes) {
            AbstractAppInvoker invoker = createProxyInvoker(clazz.newInstance());
            invoker.invoke();

            //System.gc();
        }

        System.out.println("********************* statistics **********************");
        for (Map.Entry<String, Long> entry : STATISTICS_MAP.entrySet()) {
            System.out.println("method [" + entry.getKey() + "] total cost [" + entry.getValue() + "]ms");
        }
    }

    private static AbstractAppInvoker createProxyInvoker(Object invoker) {
        ProxyFactory factory = new JavassistProxyFactory();
        Class<?> superclass = invoker.getClass().getSuperclass();
        Object proxy = factory
                .createInterceptorProxy(invoker, new ProfileInterceptor(), new Class[]{superclass});
        return (AbstractAppInvoker) proxy;
    }

    private static class ProfileInterceptor implements Interceptor {

        @Override
        public Object intercept(Invocation invocation) throws Throwable {
            Class<?> clazz = invocation.getProxy().getClass();
            Method method = clazz.getMethod(invocation.getMethod().getName(), Object[].class);

            Object result = null;
            if (method.isAnnotationPresent(Test.class)
                    && method.getName().equals("invoke")) {

                String methodName = String.format("%s.%s", clazz.getSimpleName(), method.getName());
                System.out.println("method [" + methodName + "] start invoke");

                long start = System.currentTimeMillis();
                result = invocation.proceed();
                long cost = System.currentTimeMillis() - start;

                System.out.println("method [" + methodName + "] total cost [" + cost + "]ms");

                STATISTICS_MAP.put(methodName, cost);
            }

            return result;
        }
    }
}
  • 包扫描工具: PackageScanUtil
public class PackageScanUtil {

    private static final String CLASS_SUFFIX = ".class";

    private static final String FILE_PROTOCOL = "file";

    public static Set<Class<?>> scanPackage(String packageName) throws IOException {

        Set<Class<?>> classes = new HashSet<>();
        String packageDir = packageName.replace('.', '/');
        Enumeration<URL> packageResources = Thread.currentThread().getContextClassLoader().getResources(packageDir);
        while (packageResources.hasMoreElements()) {
            URL packageResource = packageResources.nextElement();

            String protocol = packageResource.getProtocol();
            // 只扫描项目内class
            if (FILE_PROTOCOL.equals(protocol)) {
                String packageDirPath = URLDecoder.decode(packageResource.getPath(), "UTF-8");
                scanProjectPackage(packageName, packageDirPath, classes);
            }
        }

        return classes;
    }

    private static void scanProjectPackage(String packageName, String packageDirPath, Set<Class<?>> classes) {

        File packageDirFile = new File(packageDirPath);
        if (packageDirFile.exists() && packageDirFile.isDirectory()) {

            File[] subFiles = packageDirFile.listFiles(new FileFilter() {
                @Override
                public boolean accept(File pathname) {
                    return pathname.isDirectory() || pathname.getName().endsWith(CLASS_SUFFIX);
                }
            });

            for (File subFile : subFiles) {
                if (!subFile.isDirectory()) {
                    String className = trimClassSuffix(subFile.getName());
                    String classNameWithPackage = packageName + "." + className;

                    Class<?> clazz = null;
                    try {
                        clazz = Class.forName(classNameWithPackage);
                    } catch (ClassNotFoundException e) {
                        // ignore
                    }
                    assert clazz != null;

                    Class<?> superclass = clazz.getSuperclass();
                    if (superclass == AbstractAppInvoker.class) {
                        classes.add(clazz);
                    }
                }
            }
        }
    }

    // trim .class suffix
    private static String trimClassSuffix(String classNameWithSuffix) {
        int endIndex = classNameWithSuffix.length() - CLASS_SUFFIX.length();
        return classNameWithSuffix.substring(0, endIndex);
    }
}

注: 在此仅扫描项目目录下的单层目录的class文件, 功能更强大的包扫描工具可参考Spring源代码或Touch源代码中的PackageScanUtil.


AppInvoker基类: AbstractAppInvoker

提供通用测试参数 & 工具函数.

public abstract class AbstractAppInvoker {

    protected static final int SIZE = 170_0000;

    protected static final IObjectSerializer serializer = new Hessian2Serializer();

    protected static FeedDO createFeed(long id, String userId, long createTime) {

        return new FeedDO(id, userId, (int) id, userId + "_" + id, createTime);
    }

    protected static void free(ByteBuffer byteBuffer) {
        if (byteBuffer.isDirect()) {
            ((DirectBuffer) byteBuffer).cleaner().clean();
        }
    }

    protected static void checkValid(Object obj) {
        if (obj == null) {
            throw new RuntimeException("cache invalid");
        }
    }

    protected static void sleep(int time, String beforeMsg) {
        if (!Strings.isNullOrEmpty(beforeMsg)) {
            System.out.println(beforeMsg);
        }

        try {
            Thread.sleep(time);
        } catch (InterruptedException ignored) {
            // no op
        }
    }


    /**
     * 供子类继承 & 外界调用
     *
     * @param param
     */
    public abstract void invoke(Object... param);
}

序列化/反序列化接口与实现

public interface IObjectSerializer {

    <T> byte[] serialize(T obj);

    <T> T deserialize(byte[] bytes);
}
public class Hessian2Serializer implements IObjectSerializer {

    private static final Logger LOGGER = LoggerFactory.getLogger(Hessian2Serializer.class);

    @Override
    public <T> byte[] serialize(T obj) {
        if (obj != null) {
            try (ByteArrayOutputStream os = new ByteArrayOutputStream()) {

                Hessian2Output out = new Hessian2Output(os);
                out.writeObject(obj);
                out.close();
                return os.toByteArray();

            } catch (IOException e) {
                LOGGER.error("Hessian serialize error ", e);
                throw new CacherException(e);
            }
        }
        return null;
    }

    @SuppressWarnings("unchecked")
    @Override
    public <T> T deserialize(byte[] bytes) {
        if (bytes != null) {
            try (ByteArrayInputStream is = new ByteArrayInputStream(bytes)) {

                Hessian2Input in = new Hessian2Input(is);
                T obj = (T) in.readObject();
                in.close();

                return obj;

            } catch (IOException e) {
                LOGGER.error("Hessian deserialize error ", e);
                throw new CacherException(e);
            }
        }
        return null;
    }
}

完整项目地址: https://github.com/feiqing/off-heap-tester.git.


GC统计工具

#!/bin/bash

pid=`jps | grep $1 | awk '{print $1}'`
jstat -gcutil ${pid} 400 10000
  • 使用
    sh jstat-uti.sh ${u-main-class}

附加: 为什么在实验中in-heap cache的Minor GC那么少?
现在我还不能给出一个确切地分析答案, 有的同学说是因为CMS Full GC会连带一次Minor GC, 而用jstat会直接计入Full GC, 但查看详细的GC日志也并未发现什么端倪. 希望有了解的同学可以在下面评论区可以给我留言, 再次先感谢了O(∩_∩)O~.


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
26天前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
208 1
|
15天前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
24天前
|
Java
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80
|
25天前
|
Java
JVM运行时数据区(内存结构)
1)虚拟机栈:每次调用方法都会在虚拟机栈中产生一个栈帧,每个栈帧中都有方法的参数、局部变量、方法出口等信息,方法执行完毕后释放栈帧 (2)本地方法栈:为native修饰的本地方法提供的空间,在HotSpot中与虚拟机合二为一 (3)程序计数器:保存指令执行的地址,方便线程切回后能继续执行代码
19 3
|
26天前
|
存储 缓存 监控
Elasticsearch集群JVM调优堆外内存
Elasticsearch集群JVM调优堆外内存
45 1
|
1月前
|
Arthas 监控 Java
JVM进阶调优系列(9)大厂面试官:内存溢出几种?能否现场演示一下?| 面试就那点事
本文介绍了JVM内存溢出(OOM)的四种类型:堆内存、栈内存、元数据区和直接内存溢出。每种类型通过示例代码演示了如何触发OOM,并分析了其原因。文章还提供了如何使用JVM命令工具(如jmap、jhat、GCeasy、Arthas等)分析和定位内存溢出问题的方法。最后,强调了合理设置JVM参数和及时回收内存的重要性。
|
1月前
|
Java Linux Windows
JVM内存
首先JVM内存限制于实际的最大物理内存,假设物理内存无限大的话,JVM内存的最大值跟操作系统有很大的关系。简单的说就32位处理器虽然可控内存空间有4GB,但是具体的操作系统会给一个限制,这个限制一般是2GB-3GB(一般来说Windows系统下为1.5G-2G,Linux系统下为2G-3G),而64bit以上的处理器就不会有限制。
20 1
|
1月前
|
存储 监控 Java
JVM进阶调优系列(8)如何手把手,逐行教她看懂GC日志?| IT男的专属浪漫
本文介绍了如何通过JVM参数打印GC日志,并通过示例代码展示了频繁YGC和FGC的场景。文章首先讲解了常见的GC日志参数,如`-XX:+PrintGCDetails`、`-XX:+PrintGCDateStamps`等,然后通过具体的JVM参数和代码示例,模拟了不同内存分配情况下的GC行为。最后,详细解析了GC日志的内容,帮助读者理解GC的执行过程和GC处理机制。
|
2月前
|
存储 算法 Java
聊聊jvm的内存结构, 以及各种结构的作用
【10月更文挑战第27天】JVM(Java虚拟机)的内存结构主要包括程序计数器、Java虚拟机栈、本地方法栈、Java堆、方法区和运行时常量池。各部分协同工作,为Java程序提供高效稳定的内存管理和运行环境,确保程序的正常执行、数据存储和资源利用。
55 10
|
2月前
|
存储 算法 Java
Java虚拟机(JVM)的内存管理与性能优化
本文深入探讨了Java虚拟机(JVM)的内存管理机制,包括堆、栈、方法区等关键区域的功能与作用。通过分析垃圾回收算法和调优策略,旨在帮助开发者理解如何有效提升Java应用的性能。文章采用通俗易懂的语言,结合具体实例,使读者能够轻松掌握复杂的内存管理概念,并应用于实际开发中。