试读《大数据日知录:架构与算法》有感

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 活动地址:http://blog.csdn.net/blogdevteam/article/details/39894901。

活动地址:http://blog.csdn.net/blogdevteam/article/details/39894901

其实“大数据”这个词在我的脑海中还没有一个比较确切的定义,几年前我接触了一个名词“海量数据”,它主要是指在数据库中如何处理优化查询海量数据的SQL,或者使用NoSQL(Not only SQL)进行处理,进而进行数据分析、数据挖掘等,从大量无规律的数据中提取出有价值的信息,总之海量数据是与数据库紧密关联的。而这两年兴起了“大数据”浪潮,我认为“海量数据”强调的是数据量的大小,而大数据则不仅仅是数据量的大小,还指数据本身的大小。用《大数据时代》中的4V特点来概括大数据就是:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

大数据的应用场景

大数据时代已经来临,比如淘宝网的日交易记录、用户浏览商品的记录就是大数据的典型应用场景,根据这些“数据”能够推断出用户购买商品的习惯、用户喜欢什么样的商品,进而更加准确的推荐一些商品给用户,以此提高交易额和交易量。再比如微信的应用,6亿多用户本身就是“大数据”,再加上6亿多用户彼此之间的关系,更是形成了一张巨大的社交网络。如何为这6亿用户提供高质量的实时通信交流、如何提供精确的搜索,都是大数据应用领域需要研究的课题。

pagerank 排名算法

pagerank即搜索引擎是根据什么样的规则、应用什么样的算法来对网页进行关联度筛选的,正好试读部分提供了这部分的内容。以前曾经写过简单的网页爬虫程序,抓取指定网站的页面的新闻等。原理很简单,就是通过请求网站获取返回的html进行分析,用正则筛选出包含关键字的页面的href和标题,然后存入数据库中。而通过试读部分我了解到,pagerank即网页的页面等级基于两个假设:数量假设、质量假设。pagerank算法刚开始赋予每个网页相同的重要性得分,通过迭代递归计算来更新每个页面节点的pagerank得分,直到得分稳定为止。


TAO图数据库

我还关注到了试读当中介绍的Facebook的TAO这个跨数据中心分布式图数据库。它由分布在多个数据中心的数千台服务器构成,为了能够实时响应应用请求,系统架构更重视可用性和低延时,尤其是对读操作做了很多优化。

通过主cache和从cache的二级缓存机制,降低缓存之间的耦合,同时系统也易于扩展。


未来大数据将会在各个领域不断发展和演变,并深刻的影响人类的生活。它涉及到的新技术、新架构非常繁杂,包括分布式、机器学习、数据挖掘等各个技术方向,并作为移动互联网、云计算、物联网等应用领域的核心支撑。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2月前
|
大数据
【赵渝强老师】大数据主从架构的单点故障
大数据体系架构中,核心组件采用主从架构,存在单点故障问题。为提高系统可用性,需实现高可用(HA)架构,通常借助ZooKeeper来实现。ZooKeeper提供配置维护、分布式同步等功能,确保集群稳定运行。下图展示了基于ZooKeeper的HDFS HA架构。
|
3月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
251 1
|
8天前
|
负载均衡 算法
架构学习:7种负载均衡算法策略
四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。
87 11
架构学习:7种负载均衡算法策略
|
19天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
84 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
1月前
|
存储 SQL 分布式计算
大数据时代的引擎:大数据架构随记
大数据架构通常分为四层:数据采集层、数据存储层、数据计算层和数据应用层。数据采集层负责从各种源采集、清洗和转换数据,常用技术包括Flume、Sqoop和Logstash+Filebeat。数据存储层管理数据的持久性和组织,常用技术有Hadoop HDFS、HBase和Elasticsearch。数据计算层处理大规模数据集,支持离线和在线计算,如Spark SQL、Flink等。数据应用层将结果可视化或提供给第三方应用,常用工具为Tableau、Zeppelin和Superset。
426 8
|
1月前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
104 3
|
2月前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
319 3
【赵渝强老师】基于大数据组件的平台架构
|
1月前
|
存储 算法 安全
分布式系统架构1:共识算法Paxos
本文介绍了分布式系统中实现数据一致性的重要算法——Paxos及其改进版Multi Paxos。Paxos算法由Leslie Lamport提出,旨在解决分布式环境下的共识问题,通过提案节点、决策节点和记录节点的协作,确保数据在多台机器间的一致性和可用性。Multi Paxos通过引入主节点选举机制,优化了基本Paxos的效率,减少了网络通信次数,提高了系统的性能和可靠性。文中还简要讨论了数据复制的安全性和一致性保障措施。
55 1
|
1月前
|
存储 负载均衡 监控
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
53 0
|
2月前
|
缓存 算法 大数据
大数据查询优化算法
【10月更文挑战第26天】
130 1

热门文章

最新文章