OpenCV For Java环境搭建与功能演示

简介: OpenCV概述OpenCV做为功能强大的计算机视觉开源框架,包含了500多个算法实现,而且还在不断增加,其最新版本已经更新到3.2。其SDK支持Android与Java平台开发,对于常见的图像处理需求几乎都可以满足,理应成为广大Java与Android程序员的首先的图像处理框架。

OpenCV概述

OpenCV做为功能强大的计算机视觉开源框架,包含了500多个算法实现,而且还在不断增加,其最新版本已经更新到3.2。其SDK支持Android与Java平台开发,对于常见的图像处理需求几乎都可以满足,理应成为广大Java与Android程序员的首先的图像处理框架。Java中使用OpenCV的配置及其简单,可以毫不客气的说几乎是零配置都可以。

一:配置

配置引入OpenCV相关jar包,首先要下载OpenCV的自解压版本,下载地址:
http://opencv.org/opencv-3-2.html
然后拉到网页的最下方,下载Windows自解压开发包
这里写图片描述

下载好了双击解压缩之后找到build路径,显示如下:
这里写图片描述

双击打开Java文件夹,
这里写图片描述

里面有一个jar直接导入到Eclipse中的新建项目中去, 然后把x64里面的dll文件copy到Eclipse中使用的Java JDK bin和jre/bin目录下面即可。环境就配置好啦,简单吧!配置好的最终项目结构:
这里写图片描述

二:加载图像与像素操作

读入一张图像 -, 一句话搞定

Mat src = Imgcodecs.imread(imageFilePath);
if(src.empty()) return;

将Mat对象转换为BufferedImage对象

public BufferedImage conver2Image(Mat mat) {
    int width = mat.cols();
    int height = mat.rows();
    int dims = mat.channels();
    int[] pixels = new int[width*height];
    byte[] rgbdata = new byte[width*height*dims];
    mat.get(0, 0, rgbdata);
    BufferedImage image = new BufferedImage(width, height, 
                            BufferedImage.TYPE_INT_ARGB);
    int index = 0;
    int r=0, g=0, b=0;
    for(int row=0; row<height; row++) {
        for(int col=0; col<width; col++) {
            if(dims == 3) {
                index = row*width*dims + col*dims;
                b = rgbdata[index]&0xff;
                g = rgbdata[index+1]&0xff;
                r = rgbdata[index+2]&0xff;
                pixels[row*width+col] = ((255&0xff)<<24) | 
                ((r&0xff)<<16) | ((g&0xff)<<8) | b&0xff;    
            }
            if(dims == 1) {
                index = row*width + col;
                b = rgbdata[index]&0xff;
                pixels[row*width+col] = ((255&0xff)<<24) | 
                ((b&0xff)<<16) | ((b&0xff)<<8) | b&0xff;    
            }
        }
    }
    setRGB( image, 0, 0, width, height, pixels);
    return image;
}

将BufferedImage对象转换为Mat对象

public Mat convert2Mat(BufferedImage image) {
    int width = image.getWidth();
    int height = image.getHeight();
    Mat src = new Mat(new Size(width, height), CvType.CV_8UC3);
    int[] pixels = new int[width*height];
    byte[] rgbdata = new byte[width*height*3];
    getRGB( image, 0, 0, width, height, pixels );
    int index = 0, c=0;
    int r=0, g=0, b=0;
    for(int row=0; row<height; row++) {
        for(int col=0; col<width; col++) {
            index = row*width + col;
            c = pixels[index];
            r = (c&0xff0000)>>16;
            g = (c&0xff00)>>8;
            b = c&0xff;

            index = row*width*3 + col*3;
            rgbdata[index] = (byte)b;
            rgbdata[index+1] = (byte)g;
            rgbdata[index+2] = (byte)r;
        }
    }

    src.put(0, 0, rgbdata);
    return src;
}

特别要说明一下,BufferedImage与Mat的RGB通道顺序是不一样,正好相反,在Mat对象中三通道的顺序为BGR而在BufferedImage中为RGB。

从Mat中读取全部像素(其中image为Mat类型数据)

int width = image.cols();
int height = image.rows();
int dims = image.channels();
byte[] data = new byte[width*height*dims];
image.get(0, 0, data);

遍历像素操作与保存改变

int index = 0;
int r=0, g=0, b=0;
for(int row=0; row<height; row++) {
    for(int col=0; col<width*dims; col+=dims) {
        index = row*width*dims + col;
        b = data[index]&0xff;
        g = data[index+1]&0xff;
        r = data[index+2]&0xff;

        r = 255 - r;
        g = 255 - g;
        b = 255 - b;

        data[index] = (byte)b;
        data[index+1] = (byte)g;
        data[index+2] = (byte)r;
    }
}
image.put(0, 0, data);

保存Mat对象为图像文件 - 一句话可以搞定

Imgcodecs.imwrite(filePath, src);           

OpenCV代码运行与测试

  • 调节明暗程度 - 亮度降低
    这里写图片描述

  • 调节明暗程度 - 亮度提升
    这里写图片描述

  • 高斯模糊
    这里写图片描述

  • 锐化
    这里写图片描述

  • 梯度
    这里写图片描述

  • 灰度化
    这里写图片描述

上述效果完整Java代码如下:

package com.gloomyfish.opencvdemo;

import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Size;
import org.opencv.imgproc.Imgproc;

public class ImageFilters {

    /** - 反色处理 - */
    public Mat inverse(Mat image) {
        int width = image.cols();
        int height = image.rows();
        int dims = image.channels();
        byte[] data = new byte[width*height*dims];
        image.get(0, 0, data);

        int index = 0;
        int r=0, g=0, b=0;
        for(int row=0; row<height; row++) {
            for(int col=0; col<width*dims; col+=dims) {
                index = row*width*dims + col;
                b = data[index]&0xff;
                g = data[index+1]&0xff;
                r = data[index+2]&0xff;

                r = 255 - r;
                g = 255 - g;
                b = 255 - b;

                data[index] = (byte)b;
                data[index+1] = (byte)g;
                data[index+2] = (byte)r;
            }
        }

        image.put(0, 0, data);
        return image;
    }

    public Mat brightness(Mat image) {
        // 亮度提升
        Mat dst = new Mat();
        Mat black = Mat.zeros(image.size(), image.type());
        Core.addWeighted(image, 1.2, black, 0.5, 0, dst);
        return dst;
    }

    public Mat darkness(Mat image) {
        // 亮度降低
        Mat dst = new Mat();
        Mat black = Mat.zeros(image.size(), image.type());
        Core.addWeighted(image, 0.5, black, 0.5, 0, dst);
        return dst;
    }

    public Mat gray(Mat image) {
        // 灰度
        Mat gray = new Mat();
        Imgproc.cvtColor(image, gray, Imgproc.COLOR_BGR2GRAY);
        return gray;
    }

    public Mat sharpen(Mat image) {
        // 锐化
        Mat dst = new Mat();
        float[] sharper = new float[]{0, -1, 0, -1, 5, -1, 0, -1, 0};
        Mat operator = new Mat(3, 3, CvType.CV_32FC1);
        operator.put(0, 0, sharper);
        Imgproc.filter2D(image, dst, -1, operator);
        return dst;
    }

    public Mat blur(Mat image) {
        // 高斯模糊
        Mat dst = new Mat();
        Imgproc.GaussianBlur(image, dst, new Size(15, 15), 0);
        return dst;
    }


    public Mat gradient(Mat image) {
        // 梯度
        Mat grad_x = new Mat();
        Mat grad_y = new Mat();
        Mat abs_grad_x = new Mat();
        Mat abs_grad_y = new Mat();

        Imgproc.Sobel(image, grad_x, CvType.CV_32F, 1, 0);
        Imgproc.Sobel(image, grad_y, CvType.CV_32F, 0, 1);
        Core.convertScaleAbs(grad_x, abs_grad_x);
        Core.convertScaleAbs(grad_y, abs_grad_y);
        grad_x.release();
        grad_y.release();
        Mat gradxy = new Mat();
        Core.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 10, gradxy);
        return gradxy;
    }
}

可以说简单到哭,此外OpenCV For Java支持各种的图像处理包括形态学操作,二值图像分析、图像特征检测与识别、模板匹配、直方图相关功能等等。常见的机器学习算法与图像分析方法。可以说是功能最强大的图像处理SDK与开发平台之一,本人继续发掘分享!

特别注意
在调用之前,一定要加上这句话

System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

目的是加载OpenCV API相关的DLL支持,没有它是不会正确运行的。以上代码与功能实现是基于JDK8 64位与OpenCV 3.2版本。

欢迎大家继续关注本博客!

目录
相关文章
|
3月前
|
前端开发 Java API
2025 年 Java 全栈从环境搭建到项目上线实操全流程指南:Java 全栈最新实操指南(2025 版)
本指南涵盖2025年Java全栈开发核心技术,从JDK 21环境搭建、Spring Boot 3.3实战、React前端集成到Docker容器化部署,结合最新特性与实操流程,助力构建高效企业级应用。
1012 1
|
3月前
|
安全 Java API
Java中的Lambda表达式:简洁与功能的结合
Java中的Lambda表达式:简洁与功能的结合
393 211
|
3月前
|
JavaScript Java 微服务
现代化 Java Web 在线商城项目技术方案与实战开发流程及核心功能实现详解
本项目基于Spring Boot 3与Vue 3构建现代化在线商城系统,采用微服务架构,整合Spring Cloud、Redis、MySQL等技术,涵盖用户认证、商品管理、购物车功能,并支持Docker容器化部署与Kubernetes编排。提供完整CI/CD流程,助力高效开发与扩展。
442 64
|
2月前
|
存储 数据可视化 Java
Java Stream API 的强大功能
Java Stream API 是 Java 8 引入的重要特性,它改变了集合数据的处理方式。通过声明式语法,开发者可以更简洁地进行过滤、映射、聚合等操作。Stream API 支持惰性求值和并行处理,提升了代码效率和可读性,是现代 Java 开发不可或缺的工具。
Java Stream API 的强大功能
|
5月前
|
Java 应用服务中间件 Linux
在Java 12环境中配置和部署Apache Tomcat的步骤。
这段部署Tomcat的冒险旅程充满技术挑战,但同时也像游戏一样充满乐趣。它需要你提前准备,仔细执行,并随时准备解决意外情况。成功后,你就可以在这匹强壮的网络野马上,带着你的Java应用,冲向Web开发的璀璨星空。
176 56
|
3月前
|
前端开发 JavaScript Java
Java 项目实战城市公园信息管理系统开发流程与实用功能实现指南
本系统基于Java开发,采用Spring Boot后端框架与Vue.js前端框架,结合MySQL数据库,构建了一个高效的城市公园信息管理系统。系统包含管理员、用户和保洁人员三大模块,涵盖用户管理、园区信息查询、订票预约、服务管理等功能,提升公园管理效率与服务质量。
121 6
|
3月前
|
安全 Java 数据库
Java 项目实战病人挂号系统网站设计开发步骤及核心功能实现指南
本文介绍了基于Java的病人挂号系统网站的技术方案与应用实例,涵盖SSM与Spring Boot框架选型、数据库设计、功能模块划分及安全机制实现。系统支持患者在线注册、登录、挂号与预约,管理员可进行医院信息与排班管理。通过实际案例展示系统开发流程与核心代码实现,为Java Web医疗项目开发提供参考。
172 2
|
3月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在生物信息学基因功能预测中的优化与应用(223)
本文探讨了Java大数据与机器学习模型在生物信息学中基因功能预测的优化与应用。通过高效的数据处理能力和智能算法,提升基因功能预测的准确性与效率,助力医学与农业发展。