使用TensorFlow进行简单的图像处理

简介: 使用TensorFlow进行简单的图像处理概述作为计算机视觉开发者,使用TensorFlow进行简单的图像处理是基本技能,而TensorFlow在tf.image包中支持对图像的常见的操作包括:亮度调整对比度调整饱和度调整图像采样插值放缩色彩空间转换Gamma校正标准化图像的读入与显示我们通过OpenCV来实现,这里需要注意一点,OpenCV中图像三个通道是BGR,如果你是通过tensorflow读取的话三个通过顺序是RGB。

使用TensorFlow进行简单的图像处理

概述

作为计算机视觉开发者,使用TensorFlow进行简单的图像处理是基本技能,而TensorFlow在tf.image包中支持对图像的常见的操作包括:

  • 亮度调整
  • 对比度调整
  • 饱和度调整
  • 图像采样插值放缩
  • 色彩空间转换
  • Gamma校正
  • 标准化

图像的读入与显示我们通过OpenCV来实现,这里需要注意一点,OpenCV中图像三个通道是BGR,如果你是通过tensorflow读取的话三个通过顺序是RGB。图像读取的代码如下:

1.opencv方式

src = cv.imread("D:/vcprojects/images/meinv.png")

2.tensorflow方式

jpg = tf.read_file("D:/vcprojects/images/yuan_test.png")
img = tf.image.decode_jpeg(jpg, channels=3)

3.使用OpenCV显示图像

def show_image(image, title='input'):
    print("result : \n", image)
    cv.namedWindow(title, cv.WINDOW_AUTOSIZE)
    cv.imshow(title, image)
    cv.waitKey(0)
    cv.destroyAllWindows()

原图显示如下:
这里写图片描述

1.放缩图像

支持三种方式,分别是临界点插值、双线性插值与双立方插值,不过我发现在使用双立方插值的时候,tensorflow处理之后图像总是会出现一些噪点,这个算不算它的BUG
- tf.image.resize_nearest_neighbor # 临界点插值
- tf.image.resize_bilinear # 双线性插值
- tf.image.resize_bicubic # 双立方插值算法
演示代码如下:

src = cv.imread("D:/vcprojects/images/meinv.png")
cv.imshow("input", src)
h, w, depth = src.shape
src = np.expand_dims(src, 0)
print(src.shape)
bi_image = tf.image.resize_bilinear(src, size=[h*2, w*2])
bi_image = tf.squeeze(bi_image)
bi_result = sess.run(bi_image)
bi_result = np.uint8(bi_result)
show_image(bi_result,"bilinear-zoom")

显示图像如下:
这里写图片描述

2.图像亮度调整

图像亮度是图像基本属性之一,tensorflow支持两种方式API对图像亮度进行调整
- tf.image.adjust_brightness
- tf.image.random_brightness
使用上述API的时候需要对图像进行维度添加为四维的tensor数据,完整的图像亮度调整的代码如下:

src = cv.imread("D:/vcprojects/images/meinv.png")
src = np.expand_dims(src, 0)
brightness = tf.image.adjust_brightness(src, delta=.5)
brightness = tf.squeeze(brightness)
result = sess.run(brightness)
result = np.uint8(result)
show_image(result, "brightness demo")

显示图像如下:
这里写图片描述

3.图像对比度调整

图像对比度是图像基本属性之一,tensorflow支持两种方式API对图像对比度进行调整
- tf.image.adjust_contrast
- tf.image.random_contrast
前面一种全局调整,后面一种方式是随机调整,对比度调整的代码演示如下:

src = cv.imread("D:/vcprojects/images/meinv.png")
src = np.expand_dims(src, 0)
contrast = tf.image.adjust_contrast(src, contrast_factor=2.2)
contrast = tf.squeeze(contrast)
result = sess.run(contrast)
result = np.uint8(result)
show_image(result, "contrast demo")

显示图像如下:
这里写图片描述

4.图像gamma校正

伽玛校正就是对图像的伽玛曲线进行编辑,以对图像进行非线性色调编辑的方法,检出图像信号中的深色部分和浅色部分,并使两者比例增大,从而提高图像的对比度。相关API为:
- tf.image.adjust_gamma
常见gamma的取值范围为0.05~5之间,tensorflow实现gamma校正的代码演示如下:

src = cv.imread("D:/vcprojects/images/meinv.png")
src = np.expand_dims(src, 0)
contrast = tf.image.adjust_gamma(src, gain=1.0, gamma=4.2)
contrast = tf.squeeze(contrast)
result = sess.run(contrast)
result = np.uint8(result)
show_image(result, "gamma demo")

显示图像如下:
这里写图片描述

5.图像饱和度调整

图像饱和度是图像HSV色彩空间最常见的指标之一,通过调整图像饱和度可以得到更加自然光泽的图像,tensorflow中饱和度调整的API如下:

  • tf.image.adjust_saturation

常见的饱和度调整范围在0~5之间取值即可,演示代码如下:

src = cv.imread("D:/vcprojects/images/meinv.png")
contrast = tf.image.adjust_saturation(src, saturation_factor=2.2)
result = sess.run(contrast)
result = np.uint8(result)
show_image(result, "saturation demo")

这里要特别说明一下,饱和度调整不支持4D tensor对象,所以读入的RGB图像即可“`。无需再次进行维度增加操作。最终调整之后的演示图像如下:
这里写图片描述
6.图像标准化

这个在tensorflow中对图像数据训练之前,经常会进行此步操作,它跟归一化是有区别的。归一化的图像直方图不会改变,标准化会改变图像直方图分布,标准化API如下:
- tf.image.per_image_standardization
图像标准化实现代码如下:

src = cv.imread("D:/vcprojects/images/meinv.png")
contrast = tf.image.per_image_standardization(src)
result = sess.run(contrast)
result = np.uint8(result)
show_image(result, "standardization demo")

演示结果如下:
这里写图片描述
7.图像色彩空间转换

tensorflow支持常见图像色彩空间转换,包括RGB、HSV、灰度色彩空间,相关API如下:
- tf.image.rgb_ to_hsv
- tf.image.rgb_ to_grayscale
- tf.image.hsv_ to_rgb
将图像从RGB色彩空间转换到灰度空间的代码演示如下:

src = cv.imread("D:/vcprojects/images/meinv.png")
gray = tf.image.rgb_to_grayscale(src)
result = sess.run(gray)
result = np.uint8(result)
show_image(result, "gray - demo")

结果显示如下:
这里写图片描述

小结

tensorflow中还提供一些其他的图像操作相关API,比如裁剪、填充、随机调整亮度、对比度等,还有非最大信号压制等操作,感兴趣的可以自己进一步学习。
欢迎关注微信公众号
【OpenCV学堂】

目录
相关文章
|
7月前
|
机器学习/深度学习 JavaScript 算法
TensorFlow 2 和 Keras 高级深度学习:1~5(4)
TensorFlow 2 和 Keras 高级深度学习:1~5(4)
58 0
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
56 3
|
4月前
|
机器学习/深度学习 人工智能 TensorFlow
使用Python和TensorFlow实现图像识别
【8月更文挑战第31天】本文将引导你了解如何使用Python和TensorFlow库来实现图像识别。我们将从基本的Python编程开始,逐步深入到TensorFlow的高级功能,最后通过一个简单的代码示例来展示如何训练一个模型来识别图像。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息。
167 53
|
2月前
|
机器学习/深度学习 TensorFlow API
使用 TensorFlow 和 Keras 构建图像分类器
【10月更文挑战第2天】使用 TensorFlow 和 Keras 构建图像分类器
|
4月前
|
机器学习/深度学习 人工智能 TensorFlow
利用Python和TensorFlow实现简单图像识别
【8月更文挑战第31天】在这篇文章中,我们将一起踏上一段探索人工智能世界的奇妙之旅。正如甘地所言:“你必须成为你希望在世界上看到的改变。” 通过实践,我们不仅将学习如何使用Python和TensorFlow构建一个简单的图像识别模型,而且还将探索如何通过这个模型理解世界。文章以通俗易懂的方式,逐步引导读者从基础到高级,体验从编码到识别的整个过程,让每个人都能在AI的世界中看到自己的倒影。
|
7月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
Python深度学习基于Tensorflow(2)Tensorflow基础
Python深度学习基于Tensorflow(2)Tensorflow基础
62 3
|
7月前
|
机器学习/深度学习 TensorFlow API
Python深度学习基于Tensorflow(3)Tensorflow 构建模型
Python深度学习基于Tensorflow(3)Tensorflow 构建模型
125 2
|
7月前
|
机器学习/深度学习 PyTorch TensorFlow
TensorFlow、PyTorch、Keras、Scikit-learn和ChatGPT。视觉开发软件工具 Halcon、VisionPro、LabView、OpenCV
TensorFlow、PyTorch、Keras、Scikit-learn和ChatGPT。视觉开发软件工具 Halcon、VisionPro、LabView、OpenCV
115 1
|
7月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
精通 TensorFlow 2.x 计算机视觉:第一部分
精通 TensorFlow 2.x 计算机视觉:第一部分
161 0
|
7月前
|
TensorFlow 算法框架/工具 计算机视觉
精通 TensorFlow 2.x 计算机视觉:第三、四部分
精通 TensorFlow 2.x 计算机视觉:第三、四部分
129 0
下一篇
DataWorks