谷歌发布TensorBoard API,让你自定义机器学习中的可视化

简介:
本文来自AI新媒体量子位(QbitAI)

今天,谷歌发布了一系列TensorBoard API,开发者可在TensorBoard中添加自定义的可视化插件,实现自定义可视化效果。同时,谷歌还升级了TensorBoard的仪表盘。

API获取地址:

https://github.com/tensorflow/tensorboard-plugin-example/blob/master/README.md

这些API有何特点?谷歌背后的目的何在?我们不妨一探究竟。

 TensorBoard完全配置时的样子

由难到易

这事还得从头说起。

2015年,谷歌开源了TensorFlow,里面自带一套帮助检测、理解和运行模型的可视化工具TensorBoard。

TensorBoard中包含了一小组预先确定的通用可视化效果,基本上适用于所有的深度学习应用,比如观察损失随时间的变化,或在高维空间中探索聚类。

然而,在没有可重用的API时,TensorFlow团队外的开发人员添加新的可视化效果比较困难。因此,谷歌决定发布一套统一的API,让开发者能在TensorBoard中添加自定义的可视化插件。同时,谷歌还用这些新API升级了现有的仪表盘,当做创作参考示例。

举个栗子

目前,用户可以在GitHub上找到TensorBoard/plugins目录,探索这些TensorBoard中的插件列表。

目录地址:

https://github.com/tensorflow/tensorboard-plugin-example

举个例子,比如这个能生成准确率与召回率曲线的新插件pr_curves:

这个插件展示了标准TensorBoard插件中包含的三部分内容:

1. 用于收集数据供以后可视化使用的summary_operation文档

GitHub地址:

https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/pr_curve/summary.py

2. 为自定义数据服务的Python后端

GitHub地址:

https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/pr_curve/pr_curves_plugin.py

3. 内置TypeScript和polymer的TensorBoard仪表盘

GitHub地址:

https://github.com/tensorflow/tensorboard/tree/master/tensorboard/plugins/pr_curve/tf_pr_curve_dashboard

此外,与其他插件一样,“pr_curves”提供了一个Demo,用户可以学习如何使用插件,插件开发者可用来生成开发期间的示例数据。

为了进一步说明插件是如何工作的,谷歌还创建了一个框架性的Greeter插件,它能在运行模型时可以收集并显示问候语。谷歌在博客中建议开发人员从Greeter插件和其他现有的插件开始探索。

插件地址:

https://github.com/tensorflow/tensorboard/tree/master/tensorboard/plugins

比如,杨百翰大学的Chris Anderson硕士期间创建了一个API并命名为Beholder,Beholder能将训练模型时的数据(如梯度和卷积滤波器等)以视频的形式展示出来,量子位将demo视频搬运了过来:

 Anderson创建TensorBoard API Beholder

“全民AI”

不得不说,谷歌一直是“全民AI”的拥护者。

上月,谷歌TensorFlow和AIY(AI+DIY)团队开源了语音识别数据集,帮助开发者为各种智能设备创建个性基本语音指令。

今年6月,推在移动设备上运行的AI模型TensorFlow Lite后没几周,谷歌又开源了预先训练的计算机视觉模型MobileNets,专为智能手机设计。

最后,附Google Research Blog原文地址:

https://research.googleblog.com/2017/09/build-your-own-machine-learning.html

本文作者:安妮
原文发布时间:2017-09-12
相关文章
|
机器学习/深度学习 数据可视化 算法
机器学习-可解释性机器学习:随机森林与fastshap的可视化模型解析
机器学习-可解释性机器学习:随机森林与fastshap的可视化模型解析
1414 1
|
机器学习/深度学习 算法 TensorFlow
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
276 0
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
|
7月前
|
人工智能 数据可视化 API
开箱即用的可视化AI应用编排工具 Langflow,可调用魔搭免费API作为tool
ModelScope 社区基于优秀的开源可视化AI应用编排工具 Langflow 搭建了创空间,以方便社区开发者基于社区开源模型及免费魔搭 API-Inference,快速创建Agent应用、RAG应用并将其部署为API服务。
997 14
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
824 4
|
机器学习/深度学习 数据可视化 搜索推荐
Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。
【7月更文挑战第5天】Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。流程包括数据获取、预处理、探索、模型选择、评估与优化,以及结果可视化。示例展示了用户行为、话题趋势和用户画像分析。Python的丰富生态使得社交媒体洞察变得高效。通过学习和实践,可以提升社交媒体分析能力。
310 1
|
存储 数据可视化 JavaScript
可视化集成API接口请求+变量绑定+源码输出
可视化集成API接口请求+变量绑定+源码输出
327 4
|
机器学习/深度学习 数据可视化 JavaScript
探索机器学习模型的可视化技术
【9月更文挑战第23天】在数据科学中,理解和解释机器学习模型的决策过程是至关重要的。本文将介绍几种流行的可视化工具和库,如TensorBoard、D3.js等,帮助读者更好地理解模型内部工作原理及其预测结果。通过实例演示如何使用这些工具进行模型可视化,增强模型的可解释性。
|
机器学习/深度学习 数据采集 数据可视化
基于python 机器学习算法的二手房房价可视化和预测系统
文章介绍了一个基于Python机器学习算法的二手房房价可视化和预测系统,涵盖了爬虫数据采集、数据处理分析、机器学习预测以及Flask Web部署等模块。
450 2
基于python 机器学习算法的二手房房价可视化和预测系统
|
机器学习/深度学习 人工智能 Java
人工智能平台PAI产品使用合集之已经通过自定义镜像部署了一个模型,想要上传并导入其他模型,该如何操作
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
机器学习/深度学习 数据采集 人工智能
人工智能:构建自定义机器学习模型的步骤与技巧
【6月更文挑战第25天】构建自定义机器学习模型涉及明确问题、数据收集预处理、特征工程、模型选择训练、评估优化及部署监控。关键技巧包括选择适配的算法、重视数据预处理、精巧的特征工程、有效评估优化和适时的模型更新。通过这些步骤和技巧,可提升模型性能与泛化能力。

热门文章

最新文章

下一篇
oss云网关配置