Uber开源深度概率编程语言Pyro,AI实验室蛰伏一年首现身

简介:
本文来自AI新媒体量子位(QbitAI)

昨天,Uber AI实验室与斯坦福研究团队共同开源了概率编程语言Pyro。Pyro是一个深度概率建模工具,它基于Python和PyTorch库,帮助开发人员为AI研究创建概率模型。

据公司代表透露,Pyro也是Uber AI实验室发布的首个公开项目。

诶等等,Uber还有AI实验室?这还得从一年前的神秘收购说起。

蛰居一年的AI实验室

Uber是有自己的神秘AI实验室,而且已经快满岁了。

去年年底,Uber收购了Geometric Intelligence,这是一家号称要超越谷歌、Facebook等巨头的AI初创公司。创始人是纽约大学心理学家Gary Marcus和剑桥大学信息工程教授Zoubin Ghahramani,团队总共15人。

被收购后,14名成员前往旧金山Uber总部,成立了Uber AI实验室,负责AI基础研究和自动驾驶相关研究。

有意思的是,自被收购后,除了今年3月创始人之一Marcus离职的消息,Uber AI实验室没有任何研究进展新闻,逐渐淡出公众视野。

直到——昨天,当Uber在官方博客宣布,Uber实验室发布开源的Pyro概率编程语言。

设计原则

Pyro满足了四个设计原则,分别是:

通用性:Pyro是个通用的PPL,可以表示任何可计算的概率分布。它通过通用性语言(任意Python代码)开始迭代和递归,之后可以添加随机抽样、观察和推理。

可扩展性:只需在原代码上添加一些手写代码,Pyro就能扩展到大型数据集。这是怎样实现的呢?Pyro通过建立现代黑箱优化技术,使用小批量数据,来做近似推理。

最小性:Pyro灵活可维护。因为它由一个强大可组合的抽象小核心实现的。在可能的情况下,繁重的任务会分分配给PyTorch和其他库完成。

灵活性:Pyro想在用户需要的时候实现自动化操作。这不是无稽之谈,Pyro用高级抽象概念表达生成和推理模型,同时支持专家轻松自定义推理。

下一步

未来几个月里,Pyro将会持续更新迭代。研究人员表示,扩展和改进Pyro有多种方向,其中最重要的技术方向包括:

  • 优化抽象概念进行快速建模(如提供自动默认引导)和高级用法(如改进Poutine对象的组合契约)。
  • 添加额外目标(如alpha散度、infoVAE和基于GAN的损失等),并且额外添加估计梯度的期望值。
  • 添加马尔可夫链蒙特卡洛(MCMC)和序列蒙特卡洛(SMC)推理,特别是哈密顿蒙特卡洛(HMC),并将它们应用于变分推断目标。
  • 探索高斯过程的模式和应用,如贝叶斯优化等。

从长远来看,研究人员希望Pyro发展的主要方向将由应用程序和新型的Pyro社区来驱动。

相关资料

Pyro官方介绍地址:

https://eng.uber.com/pyro/

Uber AI实验室地址:

http://uber.ai/

Pyro项目地址:

http://pyro.ai/

Pyro代码地址:

https://github.com/uber/pyro

祝你玩得愉快~

本文作者:安妮
原文发布时间:2017-11-04
相关文章
|
2天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
41 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
5天前
|
机器学习/深度学习 人工智能
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
Leffa 是 Meta 开源的图像生成框架,通过引入流场学习在注意力机制中精确控制人物的外观和姿势。该框架不增加额外参数和推理成本,适用于多种扩散模型,展现了良好的模型无关性和泛化能力。
42 11
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
|
10天前
|
人工智能 API 语音技术
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
TEN Agent 是一个开源的实时多模态 AI 代理框架,集成了 OpenAI Realtime API 和 RTC 技术,支持语音、文本和图像的多模态交互,具备实时通信、模块化设计和多语言支持等功能,适用于智能客服、实时语音助手等多种场景。
96 15
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
|
3天前
|
机器学习/深度学习 人工智能 算法
X-AnyLabeling:开源的 AI 图像标注工具,支持多种标注样式,适于目标检测、图像分割等不同场景
X-AnyLabeling是一款集成了多种深度学习算法的图像标注工具,支持图像和视频的多样化标注样式,适用于多种AI训练场景。本文将详细介绍X-AnyLabeling的功能、技术原理以及如何运行该工具。
28 2
X-AnyLabeling:开源的 AI 图像标注工具,支持多种标注样式,适于目标检测、图像分割等不同场景
|
10天前
|
数据采集 人工智能 编解码
书生·万象InternVL 2.5:上海 AI Lab 开源的多模态大语言模型,超越了目前许多商业模型
书生·万象InternVL 2.5是由上海AI实验室OpenGVLab团队推出的开源多模态大语言模型系列。该模型在多模态理解基准(MMMU)上表现优异,超越了许多商业模型,适用于图像和视频分析、视觉问答、文档理解和多语言处理等多个领域。
57 7
书生·万象InternVL 2.5:上海 AI Lab 开源的多模态大语言模型,超越了目前许多商业模型
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
MMAudio 是一个基于多模态联合训练的高质量 AI 音频合成项目,能够根据视频内容或文本描述生成同步的音频。该项目适用于影视制作、游戏开发、虚拟现实等多种场景,提升用户体验。
56 7
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
MetaGPT开源SELA,用AI设计AI,效果超越OpenAI使用的AIDE
MetaGPT团队开源了Tree-Search Enhanced LLM Agents(SELA)系统,通过蒙特卡罗树搜索(MCTS)优化AutoML过程,显著提升了机器学习模型的构建效率和性能。SELA在20个数据集上的实验结果表明,其性能优于传统AutoML方法和基于LLM的代理,为AutoML领域带来了新的突破。
26 4
|
机器学习/深度学习 人工智能 算法
AI大事件 | 人类理解行为数据集推出,Uber发布自家分布式深度学习框架
呜啦啦啦啦啦大家好呀,又到了本周的AI大事件时间了。过去的一周中AI圈都发生了什么?大佬们互撕了哪些问题?研究者们发布了哪些值得一读的论文?又有哪些开源的代码和数据库可以使用了?文摘菌带你盘点过去一周AI大事件! 新闻 AlphaGo Zero: 从零开始的学习 来源:DEEPMIND.
1647 0
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
61 10
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用