IDEA构建Spark编程环境和用Scala实现PageRank算法

简介: 写在前边的话       以前在学习编写mapreduce时,由于没有shell,就是首先在eclipse里配置环境,利用eclipse的强大功能进行编写,调试,编译,最终打包到集群上运行,同样面对Spark的时候,虽然spark提供了强大的shell 脚本能力,但对于定期或者处理时间很长...

写在前边的话

      以前在学习编写mapreduce时,由于没有shell,就是首先在eclipse里配置环境,利用eclipse的强大功能进行编写,调试,编译,最终打包到集群上运行,同样面对Spark的时候,虽然spark提供了强大的shell 脚本能力,但对于定期或者处理时间很长的程序来说并不适合使用shell,所以这里我选用了强大IDEA 作为spark的开发环境

      环境说明(点击下载):Java1.8.1_101    /    Scala 2.11.8    /     Intellij DEA 2.16.2   /  Spark 1.6.2

     10分钟 帮你打开Scala的编程大门:点击阅读 

    注意事项(我掉过的坑):本地Scala编程时,注意环境与集群的一致性,由于我的集群是spark1.6.2,scala2.10.x,java1.7.x,而本地环境java和scala都比集群高了一个版本,所以本地打包在集群上运行时就会出现版本不匹配的错误(如果用到java时,也是一样的),这一点大家要十分注意

一:IDEA构建Spark编程环境

       部署参考文章:使用IntelliJ IDEA编写SparkPi直接在Spark中运行

      需要注意的有两个地方

      1:在官方给的example中需要加入两行代码

    conf.setMaster("spark://192.168.48.130:7077")     //指定你的spark集群

    spark.addJar("/home/master/SparkApp/SparkTest.jar")   //指明位置
           由于我是在本地打包好的jar,所以上传jar到linux下时,必须保证位置与 代码中的一致        

       2:在提交jar包时,出现错误

 

           可以看出是17行的问题,原代码中17行:

val slices = if (args.length > 0) args(0).toInt else 2
        所以在运行jar包时需要指定该参数,官网给出的样例是这样的( http://spark.apache.org/docs/latest/

./bin/run-example SparkPi 10
        所以这里要指定数目

/opt/spark/bin/spark-submit /home/master/SparkApp/SparkApp.jar 10  --class "SparkApp"
        最终的运行结果如下



          此时我们在看Spark的Web界面监控


二:Spark执行PageRank算法

         PageRank算法解析参考:点击阅读

         PageRank的MapReduce实现参考:点击阅读

                                                     

        Shell 运行如下:

scala> val links = sc.parallelize(
     |  Array(
     |   ('A', Array('D')), 
     |   ('B', Array('A')), 
     |   ('C', Array('A', 'B')), 
     |   ('D', Array('A', 'C'))
     |  )
     | )
links: org.apache.spark.rdd.RDD[(Char, Array[Char])] = ParallelCollectionRDD[0] at parallelize at <console>:24

scala> var ranks = sc.parallelize(
     |  Array(
     |   ('A', 1.0), 
     |   ('B', 1.0), 
     |   ('C', 1.0), 
     |   ('D', 1.0)
     |  )
     | )
ranks: org.apache.spark.rdd.RDD[(Char, Double)] = ParallelCollectionRDD[1] at parallelize at <console>:24

scala> for(i <- 1 to 6){
     |     val joinRdd = links.join(ranks)
     |     val contribsRdd = joinRdd.flatMap{
     |       case(srcURL, (links, rank)) => links.map(destURL => (destURL, rank / links.size))
     |     }
     |     ranks = contribsRdd.reduceByKey(_ + _).mapValues(0.15 + _ * 0.85)
     |     ranks.take(4).foreach(println)
     |     println()
     | }

         六次迭代的结果:

        

      代码注释:

//图的初始化
val links = sc.parallelize(
 Array(
  ('A', Array('D')), 
  ('B', Array('A')), 
  ('C', Array('A', 'B')), 
  ('D', Array('A', 'C'))
 )
)

//PR值的初始化
//这里可以用 var ranks  = links.mapValues(_=> 1.0)代替
var ranks = sc.parallelize(
 Array(
  ('A', 1.0), 
  ('B', 1.0), 
  ('C', 1.0), 
  ('D', 1.0)
 )
)

//6 为循环次数,这里可以自己设置
for(i <- 1 to 6){
    val joinRdd = links.join(ranks)    //连接两个rdd
    //计算来自其他网页的PR 贡献值
    val contribsRdd = joinRdd.flatMap{
      // 注意这里的links为模式匹配得到的值, 类型为Array[Char], 并非前面的ParallelCollectionRDD
      case(srcURL, (links, rank)) => links.map(destURL => (destURL, rank / links.size))
    }
    //ranks进行更新
    ranks = contribsRdd.reduceByKey(_ + _).mapValues(0.15 + _ * 0.85)
    //打印出ranks的值
    ranks.take(4).foreach(println)
    println()   //换行,便于观察
}

           打包PageRank算法在Spark集群上运行(Jar包下载:github

/opt/spark/bin/spark-submit /home/master/SparkApp/Spark.jar --class "PageRank"

          运行结果如下:

         

         可以看到和Shell脚本运行的结果是一样的

相关文章
|
3月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
62 3
|
3月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
82 0
|
3月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
56 0
|
3月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
115 0
|
3月前
|
Java 大数据 数据库连接
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
60 2
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
|
2月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
3月前
|
存储 缓存 分布式计算
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
56 4
|
3月前
|
分布式计算 Java 大数据
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
52 0
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
|
3月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
81 0
|
3月前
|
SQL 分布式计算 大数据
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
58 0