ACM- Jungle Roads(第九天-图论)

简介: Jungle Roads Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19852   Accepted: 9136 Description The H...
Jungle Roads
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 19852   Accepted: 9136

Description


The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid money was spent on extra roads between villages some years ago. But the jungle overtakes roads relentlessly, so the large road network is too expensive to maintain. The Council of Elders must choose to stop maintaining some roads. The map above on the left shows all the roads in use now and the cost in aacms per month to maintain them. Of course there needs to be some way to get between all the villages on maintained roads, even if the route is not as short as before. The Chief Elder would like to tell the Council of Elders what would be the smallest amount they could spend in aacms per month to maintain roads that would connect all the villages. The villages are labeled A through I in the maps above. The map on the right shows the roads that could be maintained most cheaply, for 216 aacms per month. Your task is to write a program that will solve such problems. 

Input

The input consists of one to 100 data sets, followed by a final line containing only 0. Each data set starts with a line containing only a number n, which is the number of villages, 1 < n < 27, and the villages are labeled with the first n letters of the alphabet, capitalized. Each data set is completed with n-1 lines that start with village labels in alphabetical order. There is no line for the last village. Each line for a village starts with the village label followed by a number, k, of roads from this village to villages with labels later in the alphabet. If k is greater than 0, the line continues with data for each of the k roads. The data for each road is the village label for the other end of the road followed by the monthly maintenance cost in aacms for the road. Maintenance costs will be positive integers less than 100. All data fields in the row are separated by single blanks. The road network will always allow travel between all the villages. The network will never have more than 75 roads. No village will have more than 15 roads going to other villages (before or after in the alphabet). In the sample input below, the first data set goes with the map above. 

Output

The output is one integer per line for each data set: the minimum cost in aacms per month to maintain a road system that connect all the villages. Caution: A brute force solution that examines every possible set of roads will not finish within the one minute time limit. 

Sample Input

9
A 2 B 12 I 25
B 3 C 10 H 40 I 8
C 2 D 18 G 55
D 1 E 44
E 2 F 60 G 38
F 0
G 1 H 35
H 1 I 35
3
A 2 B 10 C 40
B 1 C 20
0

Sample Output

216
30

Source

这道题目刚开始出现太多次状况,因为早上才迷迷糊糊地听了一点图论的东西,下午就碰到这道题。
题目的大意是在读入的地图里删掉那些昂贵又不是必要的路径(只要有一条路包含所有点就可以了)来减少开支,然后对每行数据输出最小的开支。
首先是一个读入的问题,来自C语言的同学表示不喜欢用cin所以用的是scanf读入,读入的时候要注意,以scanf(" %c %d",&c,&w[i]);不然因为读入格式错误真的是很讨厌,题主用的是Kruskal算法,主要就是一个并查集的应用吧。
下面附上代码:


#include<cstdio>
#include <iostream>
#include<algorithm>
using namespace std;
int u[80],v[80];
int w[80];
int p[80],r[80];
int cnt;
int n;
int cmp(const int i, const int j){
	return w[i] < w[j];
}
int find(int x){
	return p[x] == x ? x:p[x] = find(p[x]);
}
int Kruskal(){
	int ans = 0;
	for(int i = 1;i <= n;i++)
		p[i] = i;
	for(int i = 1;i < cnt;i++)
		r[i] = i;
	sort(r+1,r+cnt+1,cmp);
//	cout<<"cnt == "<<cnt<<endl;
	for(int i = 1;i <= cnt;i++){
		int o = r[i];
		int x = find(u[o]);
		int y = find(v[o]);
		if(x != y){
			ans += w[o];
			p[x] = y;
		}
	}
	return	ans;
}
int main(){
	while(scanf("%d",&n) && n){
		int muc;
		cnt =1;
		for(int i = 1;i < n;i++){
			char s,e;
			scanf(" %c %d",&s,&muc);
			for(int i = cnt;i < cnt+muc;i++){
				scanf(" %c %d",&e,&w[i]);
				u[i] = s - 'A' + 1;
				v[i] = e - 'A' + 1;
			}
			cnt += muc;
		}
		int answer = Kruskal();
		printf("%d\n",answer);
	}
	return	0;
}


相关文章
RAG分块策略:主流方法(递归、jina-seg)+前沿推荐(Meta-chunking、Late chunking、SLM-SFT)
RAG分块策略:主流方法(递归、jina-seg)+前沿推荐(Meta-chunking、Late chunking、SLM-SFT)
508 11
RAG分块策略:主流方法(递归、jina-seg)+前沿推荐(Meta-chunking、Late chunking、SLM-SFT)
CSS进阶 - CSS Modules与预处理器简介
【6月更文挑战第17天】前端开发中,CSS Modules和预处理器(如Sass、Less)解决了大规模项目中CSS的管理难题,提升代码复用和维护性。CSS Modules提供局部作用域的类名,避免全局冲突,而预处理器扩展CSS功能,使代码更像编程语言。常见问题包括命名冲突和过度嵌套,可通过自动哈希、少嵌套、合理变量规划来解决。结合两者使用,遵循模块化和适度预处理原则,集成到构建工具中,能优化开发流程。这些技术是现代前端不可或缺的工具。
142 2
网络安全法律框架:全球视角下的合规性分析
网络安全法律框架:全球视角下的合规性分析
180 1
云原生之旅:从容器化到微服务架构探索移动应用开发:从理念到实践
【8月更文挑战第27天】在数字化浪潮中,云原生技术如一艘航船,带领企业乘风破浪。本文将作为你的指南针,指引你探索云原生的核心概念,从容器化技术的基石Docker和Kubernetes,到微服务架构的设计哲学。文章不仅阐述理论,更通过实际代码示例,让你体验从传统应用向云原生应用转变的奇妙旅程。准备好,我们将启航进入一个更高效、更灵活的软件部署和运维新时代。
邮件批量发送:智能筛选与高效
群发邮件可通过电子邮件营销工具、自建服务器、第三方服务或营销自动化平台实现。电子邮件营销工具如Zoho Campaigns、Mailchimp等简化了邮件设计与发送流程,并提供数据分析;自建邮件服务器则需技术支撑,但能高度定制;第三方服务如Amazon SES、SendGrid易于使用;营销自动化平台如HubSpot整合多渠道营销。企业应根据技术能力、预算和需求选择合适方法,注重内容个性化和相关性,优化策略与流程。
113 0
协程源码剖析(一)
协程源码剖析(一)
69 0
数据结构期末复习(fengkao课堂)
数据结构期末复习(fengkao课堂)
320 0
mac 下用 safari 调试 iOS 端页面
第一步:打开iphone手机的开发者模式,流程是:【设置】->【Safari】->【高级】->开启【Web检查器】
803 0
mac 下用 safari 调试 iOS 端页面
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等