Lucene4.2源码解析之fdt和fdx文件的读写(续)——fdx文件存储一个个的Block,每个Block管理着一批Chunk,通过docID读取到document需要完成Segment、Block、Chunk、document四级查询,引入了LZ4算法对fdt的chunk docs进行了实时压

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介:

2       索引读取阶段

  当希望通过一个DocId得到Doc的全部内容,那么就需要对fdx/fdt文件进行读操作了。具体的代码在CompressingStoredFieldsReader类里面。与CompressingStoredFieldsWriter一样,这些操作都是建立在fdx/fdt文件格式理解的基础上。

       既然前面有一个比喻:如果fdt是一本书的正文,那么fdx则是书的目录。那么通过docID来得到doc全部内容的这个过程则是需要两个文件联合起来发挥作用。

       具体的过程如下:

第一步:在CompressingStoredFieldsIndexReader的构造函数中加载所有的”目录信息”

 

第二步:确定docID所在Segment,由于starts数组记录了每个Segment的docID的起始值,所以通过二分查找,很快就能定位到对应的Segment.并进入到相应的SegmentReader去读取doc内容。

通过docID确定所在Segment

第三步:确定docID所在的Block

 

第四步:确定docID所在的Chunk

第五步:根据docID确定的Chunk找到chunk在fdt文件中的起始位置

第六步:读取fdt文件中的Chunk信息,通过<DocLengths>和给定的docID确定整个Chunk存储的所有doc的总长度totalLength和从baseDoc到docID的doc长度length。并用LZ4解压Chunk中的doc内容。当然,并不需要整个chunk的doc都解压,只需要解压到length的长度就可以了。

得到length和totalLength后,就可以解压了。并读取解压后文本的内容,生成Document

 

这样的话,就通过docID得到了存储到索引中document的所有内容了。

3       总结

fdx/fdt文件不涉及Lucene的核心,只是对索引内容本身的读写操作。而且fdx/fdt的文件格式相当简单明了:fdt文件存储着一个个的Chunk;fdx文件存储一个个的Block,每个Block管理着一批Chunk 。

fdt/fdx在Lucene中最有价值的地方在于:

1、给定一个DocId,如何快速还原一个Document。

2、索引内容本身的实时压缩/解压,也就是LZ4算法。这其实是为上一条服务。

3、通过SPI机制,允许用户自定义存储格式。这是Lucene在架构上面的进步。

通过这个过程的解析,也能了解到通过docID读取到document需要完成Segment、Block、Chunk、document四级查询。Segment、Block、Chunk的查找都是二分查找,速度很快,但是Chunk中定位document则是顺序查找,所以Chunk的大小直接影响着读取的性能。

 













本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6395215.html,如需转载请自行联系原作者

目录
打赏
0
0
0
0
64
分享
相关文章
.NET 平台 SM2 国密算法 License 证书生成深度解析
授权证书文件的后缀通常取决于其编码格式和具体用途。本文档通过一个示例程序展示了如何在 .NET 平台上使用国密 SM2 算法生成和验证许可证(License)文件。该示例不仅详细演示了 SM2 国密算法的实际应用场景,还提供了关于如何高效处理大规模许可证文件生成任务的技术参考。通过对不同并发策略的性能测试,开发者可以更好地理解如何优化许可证生成流程,以满足高并发和大数据量的需求。 希望这段描述更清晰地传达了程序的功能和技术亮点。
50 13
.NET 平台 SM2 国密算法 License 证书生成深度解析
|
13天前
|
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
33 10
探秘员工泄密行为防线:基于Go语言的布隆过滤器算法解析
在信息爆炸时代,员工泄密行为对企业构成重大威胁。本文聚焦布隆过滤器(Bloom Filter)这一高效数据结构,结合Go语言实现算法,帮助企业识别和预防泄密风险。通过构建正常操作“指纹库”,实时监测员工操作,快速筛查可疑行为。示例代码展示了如何利用布隆过滤器检测异常操作,并提出优化建议,如调整参数、结合日志分析系统等,全方位筑牢企业信息安全防线,守护核心竞争力。
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
54 17
【潜意识Java】深度解析黑马项目《苍穹外卖》与蓝桥杯算法的结合问题
本文探讨了如何将算法学习与实际项目相结合,以提升编程竞赛中的解题能力。通过《苍穹外卖》项目,介绍了订单配送路径规划(基于动态规划解决旅行商问题)和商品推荐系统(基于贪心算法)。这些实例不仅展示了算法在实际业务中的应用,还帮助读者更好地准备蓝桥杯等编程竞赛。结合具体代码实现和解析,文章详细说明了如何运用算法优化项目功能,提高解决问题的能力。
68 6
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
阿里云的文件存储NAS使用心得
阿里云的文件存储NAS使用心得
426 0
阿里云服务器1TB存储收费标准(数据盘/对象存储OSS/文件存储NAS)
阿里云服务器1TB存储多少钱?系统盘最大可选到500GB,数据盘选到1TB价格为3655元一年。也可以选择对象存储OSS和文件存储NAS
6569 2
阿里云服务器1TB存储收费标准(数据盘/对象存储OSS/文件存储NAS)
阿里云文件存储NAS通用型、极速型和文件存储CPFS有什么区别?
阿里云文件存储NAS极速型NAS低时延,适合企业级时延敏感型核心业务;文件存储CPFS拥有高吞吐和高IOPS,适合高性能计算业务;通用型NAS大容量、高性价比、弹性扩展,支持低频介质,适合通用类文件共享业务。
1888 0
阿里云文件存储NAS通用型、极速型和文件存储CPFS有什么区别?

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等