大数据日志分析产品——SaaS Cloud, e.g. Papertrail, Loggly, Sumo Logic;Open Source Frameworks, e.g. ELK stack, Graylog;Enterprise Products, e.g. TIBCO LogLogic, I

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

Learn how you can maximize big data in the cloud with Apache Hadoop. Download this eBook now. Brought to you in partnership with Hortonworks.

In February 2016, I presented a brand new talk at OOP in Munich: “Comparison of Frameworks and Tools for Big Data Log Analytics and IT Operations Analytics”. The focus of the talk is to discuss different open source frameworks, SaaS cloud offerings and enterprise products for analyzing big masses of distributed log events. This topic is getting much more traction these days with the emerging architecture concept of Microservices.

Key Take-Aways

  • Log Analytics enables IT Operations Analytics for Machine Data
  • Correlation of Events is the Key for Added Business Value
  • Log Management is complementary to other Big Data Components

Log Management with Papertrail, ELK Stack, TIBCO LogLogic, Splunk, etc.

Log Management has been a mature concept for many years; used for troubleshooting, root cause analysis, and solving security issues of devices such as web servers, firewalls, routers, databases, etc. In the meantime, it is also used for analyzing applications and distributed deployments using SOA or Microservices architectures.

The slide deck compares different solutions for log management:

Image title

IT Operations Analytics (ITOA) with TIBCO Unity

IT Operations Analytics is a new, very young market growing strongly (100% year-by-year, according to Gartner). In contrary to Log Management, it does not just focus on analyzing historical data, but also enables to make complex correlations of distributed data to allow predictive analytics in (near) real time. TIBCO Unity is a product heading into this direction. You can integrate log data, but also real time events (e.g. via TIBCO Hawk) to enable monitoring, analysis and complex correlation of distributed Microserices.

What about Apache Hadoop versus Log Management and ITOA?

Why not use just Apache Hadoop? You can also store and analyze all data on its cluster! Why not just use Log Collectors (such as Apache Flume) and send data directly to Hadoop without Log Analytics “in the middle”?

Here are some reasons… Log Management and ITOA tools.

  • Are an integrated solution for data analysis (tooling, consulting, support).
  • Are built exactly for these use cases.
  • Involve data indexing, data processing (querying) and data visualization by means of dashboards and other tools out-of-the-box.
  • Offer easy-of-use tooling and allow fast time-to-market / low TCO.

The following graphic shows the different concepts and when they are usually used:

Image title

Having said that, a better Hadoop integration is possible! It might make sense to leverage both together: the great tooling for Log Management, plus the Hadoop storage with very high scalability for really BIG data. For example, TIBCO Unity uses Apache Kafka under the hood to support processing and scaling millions of messages. Thus, integration with Hadoop storage might be possible in a future release…

Slides

Finally, here is my slide deck:

xxx
 
转自:https://dzone.com/articles/frameworks-and-products-big-data-log-analytics-log















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6418854.html ,如需转载请自行联系原作者



相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4月前
|
存储 消息中间件 网络协议
日志平台-ELK实操系列(一)
日志平台-ELK实操系列(一)
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
盘点2024年最先进的智能客服机器人TOP10 #SaaS产品#
综合市场数据和用户口碑为大家盘点10大主流服务商
58 4
|
2月前
|
存储 监控 安全
|
3月前
|
存储 JSON 监控
大数据-167 ELK Elasticsearch 详细介绍 特点 分片 查询
大数据-167 ELK Elasticsearch 详细介绍 特点 分片 查询
62 4
|
3月前
|
存储 消息中间件 大数据
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
53 4
|
3月前
|
存储 Prometheus NoSQL
大数据-44 Redis 慢查询日志 监视器 慢查询测试学习
大数据-44 Redis 慢查询日志 监视器 慢查询测试学习
35 3
|
3月前
|
存储 消息中间件 大数据
大数据-70 Kafka 高级特性 物理存储 日志存储 日志清理: 日志删除与日志压缩
大数据-70 Kafka 高级特性 物理存储 日志存储 日志清理: 日志删除与日志压缩
53 1
|
3月前
|
存储 消息中间件 大数据
大数据-68 Kafka 高级特性 物理存储 日志存储概述
大数据-68 Kafka 高级特性 物理存储 日志存储概述
34 1
|
3月前
|
存储 分布式计算 NoSQL
大数据-136 - ClickHouse 集群 表引擎详解1 - 日志、Log、Memory、Merge
大数据-136 - ClickHouse 集群 表引擎详解1 - 日志、Log、Memory、Merge
74 0
|
5月前
|
消息中间件 Kafka 开发工具
rsyslog+ELK收集Cisco日志
rsyslog+ELK收集Cisco日志