时间序列数据库——索引用ES、聚合分析时加载数据用什么?docvalues的列存储貌似更优优势一些。那分布式计算呢?ES做

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介:

分布式计算

分布式聚合如何做得快

Elasticsearch/Lucene从最底层就支持数据分片,查询的时候可以自动把不同分片的查询结果合并起来。Elasticsearch的document都有一个uid,默认策略是按照uid 的 hash把文档进行分片。

一个Elasticsearch Index相当于一个MySQL里的表,不同Index的数据是物理上隔离开来的。Elasticsearch的Index会分成多个Shard存储,一 部分Shard是Replica备份。一个Shard是一份本地的存储(一个本地磁盘上的目录),也就是一个Lucene的Index。不同的Shard 可能会被分配到不同的主机节点上。一个Lucene Index会存储很多的doc,为了好管理,Lucene把Index再拆成了Segment存储(子目录)。Segment内的doc数量上限是1的 31次方,这样doc id就只需要一个int就可以存储。Segment对应了一些列文件存储索引(倒排表等)和主存储(DocValues等),这些文件内部又分为小的 Block进行压缩。

时间序列数据一般按照日期分成多个Elasticsearch Index来存储,比如logstash-2014.08.02。查询的时候可以指定多个Elasticsearch Index作为查找的范围,也可以用logstash-*做模糊匹配。

美妙之处在于,虽然数据被拆得七零八落的,在查询聚合的时候甚至需要分为两个阶段完成。但是对于最终用户来说,使用起来就好像是一个数据库表一样。所有的合并查询的细节都是隐藏起来的。

对于聚合查询,其处理是分两阶段完成的:

  • Shard本地的Lucene Index并行计算出局部的聚合结果;
  • 收到所有的Shard的局部聚合结果,聚合出最终的聚合结果。

这种两阶段聚合的架构使得每个shard不用把原数据返回,而只用返回数据量小得多的聚合结果。相比Opentsdb这样的数据库设计更合理。 Opentsdb其聚合只在最终节点处完成,所有的分片数据要汇聚到一个地方进行计算,这样带来大量的网络带宽消耗。所以Influxdb等更新的时间序列数据库选择把分布式计算模块和存储引擎进行同机部署,以减少网络带宽的影响。

除此之外Elasticsearch还有另外一个减少聚合过程中网络传输量的优化,那就是Hyperloglog算 法。在计算unique visitor(uv)这样的场景下,经常需要按用户id去重之后统计人数。最简单的实现是用一个hashset保存这些用户id。但是用set保存所有 的用户id做去重需要消耗大量的内存,同时分布式聚合的时候也要消耗大量的网络带宽。Hyperloglog算法以一定的误差做为代价,可以用很小的数据 量保存这个set,从而减少网络传输消耗。

为什么时间序列需要更复杂的聚合?

关系型数据库支持一些很复杂的聚合查询逻辑,比如:

  • Join两张表;
  • Group by之后用Having再对聚合结果进行过滤;
  • 用子查询对聚合结果进行二次聚合。

在使用时间序列数据库的时候,我们经常会怀念这些SQL的查询能力。在时间序列里有一个特别常见的需求就是降频和降维。举例如下:

12:05:05 湖南 81
12:05:07 江西 30
12:05:11 湖南 80
12:05:12 江西 32
12:05:16 湖南 80
12:05:16 江西 30

按1分钟频率进行max的降频操作得出的结果是:

12:05 湖南 81
12:05 江西 32

这种按max进行降频的最常见的场景是采样点的归一化。不同的采集器采样的时间点是不同的,为了避免漏点也会加大采样率。这样就可能导致一分钟内采样多次,而且采样点的时间都不对齐。在查询的时候按max进行降频可以得出一个统一时间点的数据。

按sum进行降维的结果是:

12:05 113

经常我们需要舍弃掉某些维度进行一个加和的统计。这个统计需要在时间点对齐之后再进行计算。这就导致一个查询需要做两次,上面的例子里:

  • 先按1分钟,用max做降频;
  • 再去掉省份维度,用sum做降维。

如果仅仅能做一次聚合,要么用sum做聚合,要么用max做聚合。无法满足业务逻辑的需求。为了避免在一个查询里做两次聚合,大部分的时间序列数据库都要求数据在入库的时候已经是整点整分的。这就要求数据不能直接从采集点直接入库,而要经过一个实时计算管道进行处理。如果能够在查询的时候同时完成降频和降维,那就可以带来一些使用上的便利。

这个功能看似简单,其实非常难以实现。很多所谓的支持大数据的数据库都只支持简单的一次聚合操作。Elasticsearch 将要发布的 2.0 版本的最重量级的新特性是Pipeline Aggregation,它支持数据在聚合之后再做聚合。类似SQL的子查询和Having等功能都将被支持。

总结

时间序列随着Internet of Things等潮流的兴起正变得越来越常见。希望本文可以帮助你了解到那些号称自己非常海量,查询非常快的时间序列数据库背后的秘密。没有完美的数据 库,Elasticsearch也不例外。如果你的用例根本不包括聚合的需求,也许Opentsdb甚至MySQL就是你最好的选择。但是如果你需要聚合海量的时间序列数据,一定要尝试一下Elasticsearch!













本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6432769.html,如需转载请自行联系原作者

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
27天前
|
数据库 索引
深入探索数据库索引技术:回表与索引下推解析
【10月更文挑战第15天】在数据库查询优化的领域中,回表和索引下推是两个核心概念,它们对于提高查询性能至关重要。本文将详细解释这两个术语,并探讨它们在数据库操作中的作用和影响。
46 3
|
27天前
|
数据库 索引
深入理解数据库索引技术:回表与索引下推详解
【10月更文挑战第23天】 在数据库查询性能优化中,索引的使用是提升查询效率的关键。然而,并非所有的索引都能直接加速查询。本文将深入探讨两个重要的数据库索引技术:回表和索引下推,解释它们的概念、工作原理以及对性能的影响。
50 3
|
8天前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
25 5
|
13天前
|
数据库 索引
数据库索引
数据库索引 1、索引:建立在表一列或多列的辅助对象,目的是加快访问表的数据。 2、索引的优点: (1)、创建唯一性索引,可以确保数据的唯一性; (2)、大大加快数据检索速度; (3)、加速表与表之间的连接; (4)、在查询过程中,使用优化隐藏器,提高系统性能。 3、索引的缺点: (1)、创建和维护索引需要耗费时间,随数据量增加而增加; (2)、索引占用物理空间; (3)、对表的数据进行增删改时,索引需要动态维护,降低了数据的维护速度。
28 2
|
1月前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
64 3
Mysql(4)—数据库索引
|
23天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
116 1
|
1月前
|
存储 关系型数据库 MySQL
PACS系统 中 dicom 文件在mysql 8.0 数据库中的 存储和读取(pydicom 库使用)
PACS系统 中 dicom 文件在mysql 8.0 数据库中的 存储和读取(pydicom 库使用)
34 2
|
17天前
|
存储 关系型数据库 数据库
Postgres数据库BRIN索引介绍
BRIN索引是PostgreSQL提供的一种高效、轻量级的索引类型,特别适用于大规模、顺序数据的范围查询。通过存储数据块的摘要信息,BRIN索引在降低存储和维护成本的同时,提供了良好的查询性能。然而,其适用场景有限,不适合随机数据分布或频繁更新的场景。在选择索引类型时,需根据数据特性和查询需求进行权衡。希望本文对你理解和使用PostgreSQL的BRIN索引有所帮助。
27 0
|
24天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
53 0
|
1月前
|
关系型数据库 MySQL 数据库
深入浅出MySQL索引优化:提升数据库性能的关键
在这个数据驱动的时代,数据库性能的优劣直接关系到应用的响应速度和用户体验。MySQL作为广泛使用的数据库之一,其索引优化是提升查询性能的关键。本文将带你一探MySQL索引的内部机制,分析索引的类型及其适用场景,并通过实际案例演示如何诊断和优化索引,以实现数据库性能的飞跃。
下一篇
无影云桌面