Kappa:比Lambda更好更灵活的实时处理架构

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介:

为了进一步探讨这种批处理和实时处理有效整合在同一系统的架构,我们将在今天的文章中分析Lambda三层结构模型的适用场景,同时暴露出Lambda架构一个最明显的问题:它需要维护两套分别跑在批处理和实时计算系统上面的代码,而且这两套代码需要产出一致的结果。根据对此缺点的分析,我们引出当时还在LinkedIn的大神Jay Kreps提出的Kappa架构,本文会对Kappa架构原理进行介绍,并讨论两个架构的优缺点,最后给出一个Kappa架构的案例分析。

Lambda架构回顾Lambda架构的核心思想是把大数据系统拆分成三层:Batch Layer,Speed Layer和Serving Layer。其中,Batch Layer负责数据集存储以及全量数据集的预查询。Speed Layer主要负责对增量数据进行计算,生成Realtime Views。Serving Layer用于响应用户的查询请求,它将Batch Views和Realtime Views的结果进行合并,得到最后的结果,返回给用户。图1给出了Lambda的整体架构图:

36大数据

Kappa架构上述提到,为了将批处理和实时处理相结合,Lambda设计了Batch Layer和Speed Layer两层结构,分别用于批处理和实时计算,因此需要维护两套分别跑在批处理和实时计算系统之上的代码。面对这个问题,有人会有这样的疑问,为什么不用流计算系统来进行全量数据处理从而去除Batch Layer这一层?

可能有这样回答:流计算给人的印象是对一些流式的、临时的数据进行计算,将结果保存后就将原始数据丢弃了,因此它不适合用来处理历史数据。其实这种答案并不完全正确,对于基于Lambda架构实现的Storm框架确实是这样的,但对于后来出现的Spark并不是。

Storm是在2011年7月开源的,Spark是在2012年之后逐渐为人们所知的,因此在Nathan Marz设计Lambda架构的时候,当时还并没有一个框架既可以用于离线处理,又可以进行实时计算。但随着Spark技术的发展,这一想法成为了可能,Spark本身可以用于批处理,而构建在Spark之上的Spark Streaming又可以用于实时计算,因此利用一套系统来应对批处理和实时计算相结合的业务完全是可行的。

Kappa架构的核心思想包括以下三点:

  1. 用Kafka或者类似的分布式队列系统保存数据,你需要几天的数据量就保存几天。
  2. 当需要全量重新计算时,重新起一个流计算实例,从头开始读取数据进行处理,并输出到一个新的结果存储中。
  3. 当新的实例做完后,停止老的流计算实例,并把老的一些结果删除。

Kappa的架构图如图2所示:

36大数据

和Lambda架构相比,在Kappa架构下,只有在有必要的时候才会对历史数据进行重复计算,并且实时计算和批处理过程使用的是同一份代码。或许有些人会质疑流式处理对于历史数据的高吞吐量会力不从心,但是这可以通过控制新实例的并发数进行改善。

上面架构图中,新老实例使用了各自的结果存储,这便于随时进行回滚,更进一步,假如我们产出的是一些算法模型之类的数据,用户还可以同时对新老两份数据进行效果验证,做一些A/B test或者使用bandit算法来最大限度的使用这些数据。

两个架构的对比优缺点对比

36大数据

如上表所示,Kappa架构相对来说有更多的优点,目前也被更多的厂商用于构建商业项目。

第一,Lambda架构不仅需要维护两套分别跑在批处理和实时计算系统上面的代码,还需要批处理和全量计算长时间保持运行;而Kappa架构只有在需要的时候才进行全量计算。

第二,Kappa架构下可以启动很多个实例进行重复计算,因此在需要对一些算法模型进行调优时,Kappa架构下只需要更改一套系统的参数即可,并且允许对新老数据进行效果比对;但是在Lambda架构下,需要同时更改流计算系统算法模型和批处理系统算法模型,调参过程相对比较复杂。

第三,从用户开发、测试和运维的角度来看,Kappa架构下,开发人员只需要面对一个框架,开发、测试和运维的难度都会相对较小,这是个非常重要的优点。

 

转自:http://www.36dsj.com/archives/66641












本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6603541.html,如需转载请自行联系原作者

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
6月前
|
关系型数据库 分布式数据库 数据库
【PolarDB开源】PolarDB与微服务架构的融合:灵活扩展与高效管理
【5月更文挑战第23天】阿里云PolarDB是适用于微服务的高性能分布式数据库,提供数据分片、水平扩展及高可用性解决方案。通过SQL或API实现弹性扩展,内置故障转移保障服务连续性,且兼容MySQL协议,易于集成微服务生态。通过Spring Boot示例展示了PolarDB的配置与集成过程,强调其在现代云原生应用中的重要角色。
152 1
|
3月前
|
存储 边缘计算 运维
实时数仓Hologres发展问题之实时数仓对Lambda架构的问题如何解决
实时数仓Hologres发展问题之实时数仓对Lambda架构的问题如何解决
57 2
|
6月前
|
设计模式 Java API
Java 可扩展 API 设计:打造灵活的应用架构
【4月更文挑战第27天】设计可扩展的 API 是构建灵活、易于维护的应用程序架构的关键。Java 提供了丰富的工具和技术来实现这一目标,使开发者能够构建具有高度可扩展性的应用程序。
113 4
|
3月前
|
Cloud Native Serverless 异构计算
Serverless 架构问题之AWS Lambda在容器镜像层面的进展如何解决
Serverless 架构问题之AWS Lambda在容器镜像层面的进展如何解决
42 0
|
4月前
|
Kubernetes Cloud Native 微服务
企业级容器部署实战:基于ACK与ALB灵活构建云原生应用架构
这篇内容概述了云原生架构的优势,特别是通过阿里云容器服务Kubernetes版(ACK)和应用负载均衡器(ALB)实现的解决方案。它强调了ACK相对于自建Kubernetes的便利性,包括优化的云服务集成、自动化管理和更强的生态系统支持。文章提供了部署云原生应用的步骤,包括一键部署和手动部署的流程,并指出手动部署更适合有技术背景的用户。作者建议在预算允许的情况下使用ACK,因为它能提供高效、便捷的管理体验。同时,文章也提出了对文档改进的建议,如添加更多技术细节和解释,以帮助用户更好地理解和实施解决方案。最后,展望了ACK未来在智能化、安全性与边缘计算等方面的潜在发展。水文一篇,太忙了,见谅!
|
4月前
|
分布式计算 大数据 数据处理
「大数据」Kappa架构
**Kappa架构**聚焦于流处理,用单一处理层应对实时和批量数据,消除Lambda架构的双重系统。通过数据重放保证一致性,简化开发与维护,降低成本,提升灵活性。然而,资源消耗大,复杂查询处理不易。关键技术包括Apache Flink、Spark Streaming、Kafka、DynamoDB等,适合需实时批量数据处理的场景。随着流处理技术进步,其优势日益凸显。
167 0
「大数据」Kappa架构
|
4月前
|
存储 监控 算法
「AIGC算法」大数据架构Lambda和Kappa
**Lambda与Kappa架构对比:** Lambda提供批处理和实时处理,保证数据最终一致性,但维护复杂。Kappa简化为单一流处理,易于维护,适合实时场景,但可能增加实时处理压力,影响稳定性。选择时考虑数据一致性、系统维护、成本和实时性需求。
92 0
「AIGC算法」大数据架构Lambda和Kappa
|
4月前
|
运维
数据架构问题之为什么说Lambda架构给开发和运维带来了“深重的灾难”
数据架构问题之为什么说Lambda架构给开发和运维带来了“深重的灾难”
|
5月前
|
机器学习/深度学习 语音技术
多模态大模型不够灵活,谷歌DeepMind创新架构Zipper:分开训练再压缩
【6月更文挑战第12天】谷歌DeepMind的Zipper架构解决了多模态大模型灵活性问题,通过分解为单模态模型并用“压缩”过程组合,实现多模态生成。该方法允许独立训练每个模态,提升灵活性和可扩展性,适用于数据有限或领域特定的模态。Zipper利用交叉注意力机制融合模态输出,适用于图像描述、语音识别等任务。尽管需要更多计算资源且性能受限于单模态模型质量,但已在ASR和TTS领域展现潜力。论文链接:https://arxiv.org/pdf/2405.18669
62 3
|
4月前
|
存储 分布式计算 大数据
「大数据」Lambda架构
**Lambda架构**是Nathan Marz提出的用于大数据处理的模型,包括**批处理层**(预计算准确性)、**速度处理层**(实时低延迟)和**服务层**(合并结果响应查询)。它强调**容错性**、**低延迟**和**可扩展性**,并结合实时与批量处理。然而,它也面临数据口径不一致、计算窗口限制及开发复杂性等挑战。常用技术栈涉及Apache Hadoop/Spark、Storm/Flink、NoSQL数据库、Elasticsearch及消息队列。虽然有缺点,Lambda架构仍是大数据处理的重要框架。
118 0

热门文章

最新文章