一种神经元探索系统方法及装置

简介:

发明背景与现有技术
应用背景
深度学习已经在图像分类检测、游戏等诸多领域取得了突破性的成绩。由于人工神经网络计算量大,训练时间长。因此,相关的硬件加速平台也在百花齐放,包括基于英伟达的GPU、谷歌的TPU、以及FPGA实现的神经网络硬件平台。神经网络的结构复杂多样、计算量大的特点,给硬件设计带来了巨大挑战。
原有技术及问题 
(1)传统神经网络
基于传统的CPU完成运算,缺点是神经网路的神经元众多,由于单机的CPU个数限制,整个网络的并行计算性能不高。
(2)硬件加速神经网络
通常基于FPGA 等可编程芯片,这样的神经网络运算能力强,并行性好。但是这样的神经网络,其硬件实现的底层神经元缺乏自适应学习和演化能力。



本发明技术方案
神经网络互连模型
如右图,每一个方块表示一个神经元,以二维硬件模型(如FPGA)为例,每一个神经元连接着另外四个神经元。整个模型有三类输入输出:
(1)任意输入,每一个输入连接到一个神经元上;
(2)任意输出,每一个输出连接到一个神经元上;
(3)奖励反馈输入,连接到所有神经元上。
此外,两个相连神经元之间的连接为一个或多个浮点数(用以记忆神经网络参数)存储单元。
神经元,内部是一个多层神经网络的结构,带有自适应学习和演化能力
(1)多层神经网络有五个输入:分别表示四个连接存储单元的大小和一个奖励反馈信号的大小;
(2)多层神经网络有四个输出:四个连接存储单元的变化率;
(3)使用优化算法(如遗传算法、强化学习或者策略梯度)来优化神经网络的权重以最大化长时平均奖励(一段时间的平均奖励)
(4)优化的每一个迭代使用多种不同常用机器学习问题来进行训练。监督学习和无监督学习都需要提前转化为强化学习问题

 

本发明的技术保护点
本文提出神经元探索系统设计方法,包括神经网络互连模型,带有自适应学习和演化能力的神经元设计等



本发明有益效果
解决问题
1)神经元具备自适应学习和演化能力,可以构建结构复杂多样的神经网络。














本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/7728039.html,如需转载请自行联系原作者




目录
打赏
0
0
0
0
64
分享
相关文章
DC电源模块输出电源中的高频噪声及杂波
DC电源模块去除输出电源中的高频噪声及杂波
DC电源模块输出电源中的高频噪声及杂波
BJT放大电路的小信号模型分析法
BJT放大电路的小信号模型分析法是一种常用的分析方法,用于研究BJT放大电路在小信号条件下的放大特性。该方法基于线性化假设,将非线性的BJT放大电路近似为线性的小信号模型,以便进行分析和计算。
397 0
一阶动态电路时域分析
一阶动态电路时域分析是指研究电路在时间域内响应特性的一种分析方法。 一阶动态电路时域分析的主要特征和意义如下: 对象是一阶电路。一阶电路指其动态行为可以用一个一阶微分方程描述的电路,如RC电路、RL电路等。 分析域是时间域。研究的不是电路在不同频率下的频率响应,而是输入信号作用下输出量随时间的变化规律。 研究内容是电路的时域响应特性。如电路对阶跃输入的阶跃响应、对脉冲输入的脉冲响应曲线等。 主要方法是解一阶微分方程。根据电路的等效模型写出其一阶微分方程,然后选择适当解法求其时间域解。 目的是分析电路的动态性能。如过渡过程、时间常数、稳态误差等定量参数,为电路设计和应用提供参考。
279 0
一种分解多种信号模式非线性线性调频的方法研究(Matlab代码实现)
一种分解多种信号模式非线性线性调频的方法研究(Matlab代码实现)
156 0
模拟Stevens & Lewis描述的小型飞机纵向动力学的非线性动态反演控制器研究(Matlab代码实现)
模拟Stevens & Lewis描述的小型飞机纵向动力学的非线性动态反演控制器研究(Matlab代码实现)
|
11月前
DC电源模块是一种常用的电源建造块,能够将交流电转换为适合于直流电路使用的直流电。DC电源模块通常由变压器、整流电路、滤波电路、稳压电路等等组成。其中,稳压电路对于DC电源模块的性能和转换率影响很大。
DC电源模块是一种常用的电源建造块,能够将交流电转换为适合于直流电路使用的直流电。DC电源模块通常由变压器、整流电路、滤波电路、稳压电路等等组成。其中,稳压电路对于DC电源模块的性能和转换率影响很大。
使用卷积操作实现因子分解机
本文将介绍如何使用卷积操作实现因子分解机器。卷积网络因其局部性和权值共享的归纳偏差而在计算机视觉领域获得了广泛的成功和应用。卷积网络可以用来捕获形状的堆叠分类特征(B, num_cat, embedding_size)和形状的堆叠特征(B, num_features, embedding_size)之间的特征交互。
145 1
内置功率 MOSFET 的高频同步整流降压开关变换器
一、基本描述 MP2315 是一款内置功率 MOSFET 的高频同步整流降压开关变换器。它提供了非常紧凑的解决方案,在宽输入范围内可实现 3A 连续输出电流,具有出色的负载和线性调整率。MP2315 在输出电流负载范围内采用同步工作模式以达到高效率。其电流控制模式提供了快速瞬态响应,并使环路更易稳定。全方位保护功能包括过流保护(OCP)和过温关断保护。MP2315 最大限度地减少了现有标准外部元器件的使用,采用节省空间的8-pin TSOT23 封装。 二、基本特性 宽工作输入电压范围:4.5V 至 24V 3A 负载电流 内置90mΩ/40mΩ低导通电阻功率 MOSFETs 低静
118 0
电阻的作用及其应用
一、什么是电阻 电阻是指电流在电路中流动时遇到的阻碍。它是电路中的一种基本元件,用来限制电流的流动。电阻的单位是欧姆(Ω),表示电阻对电流流动的阻碍程度。电阻的大小取决于电阻器的材料、长度、横截面积等因素。当电流通过电阻时,会产生电阻热,将电能转化为热能。电阻常用于调节电路中的电流和电压,以及控制电路的工作状态。 二、电阻的作用 电阻在电路中起到以下几个作用: 1. 限制电流:电阻可以限制电流的流动。根据欧姆定律,电流(I)等于电压(V)除以电阻(R),因此增加电阻会减小电流。这使得电阻可以用来控制电路中的电流大小。 2. 控制电压:电阻可以分压电路中的电压。根据电压分压定律,当电阻串联在电路
194 0