Unity应用架构设计(7)——IoC工厂理念先行

简介:

一谈到 『IoC』,有经验的程序员马上会联想到控制反转,将创建对象的责任反转给工厂。IoC是依赖注入 『DI』 的核心,大名鼎鼎的Spring框架就是一个非常卓越的的控制反转、依赖注入框架。遗憾的是,我们显然不能在Unity 3D中去使用Spring框架,但思想是相通的——IoC也好,控制反转也罢,本质上是一个工厂,或者又被称为容器,我们可以自己维护一个工厂来实现对对象的管理,这也是本文的核心内容。

工厂模式初探

工厂,顾名思义,就是生产对象的地方。如果之前没有接触过设计模式,你可能会疑惑,我直接使用 『new』 关键字难道不能创建对象吗?为什么还要大费周章的让工厂来创建?当然这是没错的,直接使用 『new』 关键字很简洁,也很易懂,但你考虑过对象的释放吗?你可能会说不用考虑啊,GC会帮我们回收啊。

其实问题就出在这里,因为你没有考虑对象管理的动机,所以就不会有工厂这个概念。试想一下,使用ADO.NET或者JDBC去访问数据库,我们是不是要先建立一个Connection,当工作结束后,Close了这个连接。当再一次需要连接数据库时,再建立一次Connection,这背后其实有隐患。因为和数据库建立连接是非常耗时的,只是我们感受不到。我们能不能在关闭连接时,不销毁对象,而是将其放到一个对象池,当下一次请求来时,直接从对象池中获取。这就是工厂的动机,对对象的创建和释放进行管理,这样可以有效的提高效率。

注:释放指的是对象实现了IDisposable接口的非托管资源,在uMVVM框架,工厂维护的都是托管资源,销毁由GC决定

工厂的分类

在uMVVM框架中,我将工厂分为三类:单例(Singleton),临时(Transient),池(Pool)。

  • Singleton :该工厂生产的对象是单例的,即一旦生产出来的对象将处理所有的请求,不会因为不同的请求而产生新的对象,通常需要考虑多线程并发问题
  • Transient :该工厂生产的对象是临时的,转瞬即逝的,即每一次请求产生一个新对象,处理请求完毕后就被销毁
  • Pool:该工厂并不会无限的创建对象,取而代之的是内部维护了一个对象池,当请求来时,从对象池中获取,当请求处理完毕后,对象也不会被销毁,而是再次放回对象池中

我们可以为这三种工厂声明公共的接口:IObjectFactory,这是非常有必要的,方便在运行时根据需求动态的切换不同工厂:

public interface IObjectFactory
{
    object AcquireObject(string className);
    object AcquireObject(Type type);
    object AcquireObject<TInstance>() where TInstance : class, new();
    void ReleaseObject(object obj);
}

这个接口功能很简单,通过统一的入口对对象进行创建与销毁的管理。

Singleton Factory

有了统一的工厂的接口之后,接下来就是去实现对应的工厂了,第一个要实现的就是 Singleton Factory:

public class SingletonObjectFactory:IObjectFactory
{
    /// <summary>
    /// 共享的字典,不会因为不同的SingletonObjectFactory对象返回不唯一的实例对象
    /// </summary>
    private static Dictionary<Type,object> _cachedObjects = null;
    private static readonly object _lock=new object();
    private Dictionary<Type, object> CachedObjects
    {
        get
        {
            lock (_lock)
            {
                if (_cachedObjects==null)
                {
                    _cachedObjects=new Dictionary<Type, object>();
                }
                return _cachedObjects;
            }
        }
    }

    //...省略部分代码...

    public object AcquireObject<TInstance>() where TInstance:class,new()
    {
        var type = typeof(TInstance);
        if (CachedObjects.ContainsKey(type))
        {
            return CachedObjects[type];
        }
        lock (_lock)
        {
            var instance=new TInstance();
            CachedObjects.Add(type, instance);
            return CachedObjects[type];
        }
    }

}

上述代码中,我们需要定义一个全局的字典,用来存储所有的单例,值得注意的是,CachedObjects 字典是一个 static 类型,这表明这是一个共享的字典,不会因为不同的SingletonObjectFactory对象返回不唯一的实例对象。

还有一点,单例模式最好考虑一下多线程并发问题,虽然这是一个 『伪』 需求,毕竟Unity 3D是个单线程应用程序,但 uMVVM 框架还是考虑了多线程并发的问题,使用 lock 关键字,它必须是一个 static 类型,保证 lock 了同一个对象。

Transient Factory

Transient Factory 是最容易实现的工厂,不用考虑多线程并发问题,也不用考虑Pool,对每一次请求返回一个不同的对象:

public class TransientObjectFactory : IObjectFactory
{
    //...省略部分代码...

    public object AcquireObject<TInstance>() where TInstance : class, new()
    {
        var instance = new TInstance();
        return instance;
    }

}

Pool Factory

Pool Factory 相对来说是比较复杂的工厂,它对 Transient Factory 进行了升级——创建实例前先去Pool中看看是否有未被使用的对象,有的话,那么直接取出返回,如果没有则向Pool中添加一个。

Pool的实现有两种形式,一种是内置了诸多对象,还有一种是初始时是一个空的池,然后再往里面添加对象。第一种效率更高,直接从池里面拿,而第二种更省内存空间,类似于懒加载,uMVVM 的对象池技术使用第二种模式。

public class PoolObjectFactory : IObjectFactory
{
    /// <summary>
    /// 封装的PoolData
    /// </summary>
    private class PoolData
    {
        public bool InUse { get; set; }
        public object Obj { get; set; }
    }

    private readonly List<PoolData> _pool;
    private readonly int _max;
    /// <summary>
    /// 如果超过了容器大小,是否限制
    /// </summary>
    private readonly bool _limit;

    public PoolObjectFactory(int max, bool limit)
    {
        _max = max;
        _limit = limit;
        _pool = new List<PoolData>();
    }

    private PoolData GetPoolData(object obj)
    {
        lock (_pool)
        {
            for (var i = 0; i < _pool.Count; i++)
            {
                var p = _pool[i];
                if (p.Obj == obj)
                {
                    return p;
                }
            }
        }
        return null;
    }
    /// <summary>
    /// 获取对象池中的真正对象
    /// </summary>
    /// <param name="type"></param>
    /// <returns></returns>
    private object GetObject(Type type)
    {
        lock (_pool)
        {
            if (_pool.Count > 0)
            {
                if (_pool[0].Obj.GetType() != type)
                {
                    throw new Exception(string.Format("the Pool Factory only for Type :{0}", _pool[0].Obj.GetType().Name));
                }
            }

            for (var i = 0; i < _pool.Count; i++)
            {
                var p = _pool[i];
                if (!p.InUse)
                {
                    p.InUse = true;
                    return p.Obj;
                }
            }


            if (_pool.Count >= _max && _limit)
            {
                throw new Exception("max limit is arrived.");
            }

            object obj = Activator.CreateInstance(type, false);
            var p1 = new PoolData
            {
                InUse = true,
                Obj = obj
            };
            _pool.Add(p1);
            return obj;
        }
     }

    private void PutObject(object obj)
    {
        var p = GetPoolData(obj);
        if (p != null)
        {
            p.InUse = false;
        }
    }

    public object AcquireObject(Type type)
    {
        return GetObject(type);
    }

    public void ReleaseObject(object obj)
    {
        if (_pool.Count > _max)
        {
            if (obj is IDisposable)
            {
                ((IDisposable)obj).Dispose();
            }
            var p = GetPoolData(obj);
            lock (_pool)
            {
                _pool.Remove(p);
            }
            return;
        }
        PutObject(obj);
    }
}

上述的代码通过构造函数的 max 决定Pool的大小,limit 参数表示超过Pool容量时,是否可以再继续往Pool中添加数据。方法 GetObject 是最核心的方法,逻辑非常简单,获取对象之前先判断Pool中是否有未被使用的对象,如果有,则返回,如果没有,则根据 limit 参数再决定是否可以往Pool中添加数据。

小结

工厂模式是最常见的设计模式,根据工厂的类型可以获取不同形式的数据对象,比如单例数据、临时数据、亦或是对象池数据。这一章的工厂模式很重要,也是对下一篇对象的注入『Inject』做准备,故称之为理念先行。
源代码托管在Github上,点击此了解

本博客为 木宛城主原创,基于 Creative Commons Attribution 2.5 China Mainland License发布,欢迎转载,演绎或用于商业目的,但是必须保留本文的署名 木宛城主(包含链接)。如您有任何疑问或者授权方面的协商,请给我留言。

本文转自木宛城主博客园博客,原文链接:http://www.cnblogs.com/OceanEyes/p/factory_pattern.html,如需转载请自行联系原作者
目录
相关文章
|
4月前
|
人工智能 自然语言处理 开发工具
统一多模态 Transformer 架构在跨模态表示学习中的应用与优化
本文介绍统一多模态 Transformer(UMT)在跨模态表示学习中的应用与优化,涵盖模型架构、实现细节与实验效果,探讨其在图文检索、图像生成等任务中的卓越性能。
统一多模态 Transformer 架构在跨模态表示学习中的应用与优化
|
3月前
|
监控 Java API
Spring Boot 3.2 结合 Spring Cloud 微服务架构实操指南 现代分布式应用系统构建实战教程
Spring Boot 3.2 + Spring Cloud 2023.0 微服务架构实践摘要 本文基于Spring Boot 3.2.5和Spring Cloud 2023.0.1最新稳定版本,演示现代微服务架构的构建过程。主要内容包括: 技术栈选择:采用Spring Cloud Netflix Eureka 4.1.0作为服务注册中心,Resilience4j 2.1.0替代Hystrix实现熔断机制,配合OpenFeign和Gateway等组件。 核心实操步骤: 搭建Eureka注册中心服务 构建商品
658 3
|
1月前
|
人工智能 JavaScript 前端开发
GenSX (不一样的AI应用框架)架构学习指南
GenSX 是一个基于 TypeScript 的函数式 AI 工作流框架,以“函数组合替代图编排”为核心理念。它通过纯函数组件、自动追踪与断点恢复等特性,让开发者用自然代码构建可追溯、易测试的 LLM 应用。支持多模型集成与插件化扩展,兼具灵活性与工程化优势。
186 6
|
1月前
|
人机交互 开发工具 vr&ar
使用Unity引擎开发Rokid主机应用的模型交互操作
本文介绍如何使用Unity引擎结合Rokid OpenXR Plugin开发空间计算应用,实现射线交互、模型操作等功能。涵盖环境配置、Demo导入、UI搭建与脚本编写,助力开发者快速构建AR交互应用。
|
5月前
|
存储 编解码 Serverless
Serverless架构下的OSS应用:函数计算FC自动处理图片/视频转码(演示水印添加+缩略图生成流水线)
本文介绍基于阿里云函数计算(FC)和对象存储(OSS)构建Serverless媒体处理流水线,解决传统方案资源利用率低、运维复杂、成本高等问题。通过事件驱动机制实现图片水印添加、多规格缩略图生成及视频转码优化,支持毫秒级弹性伸缩与精确计费,提升处理效率并降低成本,适用于高并发媒体处理场景。
307 0
|
2月前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。
|
2月前
|
机器学习/深度学习 人工智能 vr&ar
H4H:面向AR/VR应用的NPU-CIM异构系统混合卷积-Transformer架构搜索——论文阅读
H4H是一种面向AR/VR应用的混合卷积-Transformer架构,基于NPU-CIM异构系统,通过神经架构搜索实现高效模型设计。该架构结合卷积神经网络(CNN)的局部特征提取与视觉Transformer(ViT)的全局信息处理能力,提升模型性能与效率。通过两阶段增量训练策略,缓解混合模型训练中的梯度冲突问题,并利用异构计算资源优化推理延迟与能耗。实验表明,H4H在相同准确率下显著降低延迟和功耗,为AR/VR设备上的边缘AI推理提供了高效解决方案。
383 0
|
1月前
|
机器学习/深度学习 自然语言处理 算法
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。
|
3月前
|
Web App开发 Linux 虚拟化
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
234 0
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
|
5月前
|
消息中间件 存储 Kafka
一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
本文详细介绍了分布式消息中间件RocketMQ的核心概念、部署方式及使用方法。RocketMQ由阿里研发并开源,具有高性能、高可靠性和分布式特性,广泛应用于金融、互联网等领域。文章从环境搭建到消息类型的实战(普通消息、延迟消息、顺序消息和事务消息)进行了全面解析,并对比了三种消费者类型(PushConsumer、SimpleConsumer和PullConsumer)的特点与适用场景。最后总结了使用RocketMQ时的关键注意事项,如Topic和Tag的设计、监控告警的重要性以及性能与可靠性的平衡。通过学习本文,读者可掌握RocketMQ的使用精髓并灵活应用于实际项目中。
4105 9
 一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性

热门文章

最新文章