Reverse反转算法+斐波那契数列递归+Reverse反转单链表算法--C++实现

简介:

Reverse反转算法

复制代码
 1 #include <iostream>
 2  3 using namespace std;
 4 //交换的函数  5 void replaced(int &a,int &b){
 6 int t = a;
 7 a = b;
 8 b = t;
 9 }
10 //反转 11 void reversed(int a[],int length){
12 int left = 0;
13 int right = length - 1;
14 while (left < right) {
15  replaced(a[left], a[right]);
16 left++;
17 right--;
18  }
19 }
20 void output(int a[],int length)
21 {
22 for (int i = 0; i<length; i++) {
23 cout << a[i] << " ";
24  }
25 }
26 int main()
27 {
28 int a[] = {1,2,3,4,5,6,7,8,9};
29 output(a, 9);
30 cout << endl;
31 reversed(a, 9);
32 output(a, 9);
33 }
复制代码

斐波那契数列

复制代码
 1 #include <iostream>
 2  3 using namespace std;
 4  5 //斐波那契数列  6 int qiebona(int a)
 7 {
 8 //也可以用if语句  9 switch (a) {
10 case 1:
11 case 2:
12 return a;
13 break;
14 15 default:
16 return qiebona(a-1)+qiebona(a-2);
17 break;
18  }
19 }
20 int main()
21 {
22 //验证斐波那契函数 23 cout << qiebona(1) << endl;
24 //然后打印前n个数的斐波那契数列 25 for (int i = 1; i <= 10; i++) {
26 cout << qiebona(i) << " ";
27  }
28 return 0;
29 }
复制代码

Reverse反转单链表算法

复制代码
 1 #include <iostream>
 2  3 using namespace std;
 4 //1首先这个数据节点中只有一个指针作为成员数据,所以这是一个单链表的节点结构  5 struct node{
 6 int payload;
 7 node* next;
 8 };
 9 //2对于一个长的单链表的操作,我们只能这个长链表的第一个节点或者说是第一个指针指向的节点开始操作 10 node* reversed(node* first){
11 //3如果链表为空或者只有一个,那就返回它自己呗 12 if (first->next == nullptr || first == nullptr) {
13 return first;
14 }//4如果有下一个实例,就
15 //5获取下一个实例 16 node* second = first -> next;
17 //这里就是递归, 18 node* new_head = reversed(second);
19 /*6 将下一个节点内部指针的方向反转,但是在反转之前,也要获取这下一个节点原来指向的下下个节点,也就是说,在这个操作之前,要在通过下一个节点获取下下一个节点.
20  假设在前一步加:node* third = second->next;但是这个简单的思路有局限性,当链表很长的时候,后面会重复这个获取下一个节点的过程,这样肯定是不明智的,因为链表的个数不确定,你就不知道要写多少代码,所以最好的办法就是通过递归重复执行前面相同的步骤(即算法)*/ 21 second -> next = first;
22 first -> next = nullptr;
23 return new_head;//7由于递归的特性,最后的return返回值会往前传递到最前面 24 }
复制代码

相关文章
|
9月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
199 2
|
9月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
223 17
|
7月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
198 0
|
8月前
|
机器学习/深度学习 存储 算法
基于 C++ 布隆过滤器算法的局域网上网行为控制:URL 访问过滤的高效实现研究
本文探讨了一种基于布隆过滤器的局域网上网行为控制方法,旨在解决传统黑白名单机制在处理海量URL数据时存储与查询效率低的问题。通过C++实现URL访问过滤功能,实验表明该方法可将内存占用降至传统方案的八分之一,查询速度提升约40%,假阳性率可控。研究为优化企业网络管理提供了新思路,并提出结合机器学习、改进哈希函数及分布式协同等未来优化方向。
241 0
|
10月前
|
存储 监控 算法
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
204 4
|
12月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
10月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
399 12
|
8月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
212 0
|
8月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
339 0
|
11月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
205 16