AI驱动智能化日志分析 : 通过决策树给日志做聚类分析

简介: 日志自动化、智能化分析对于AI需求 通常,我们分析日志,是为了两个目标: 对数据有个整体的概览,例如,生成一天内的报表。 对异常数据进行挖掘,例如,对特殊的日志进行告警。 日志分析,通常对分析者有这些要求: 对业务数据的熟悉程度要求比较高。

日志自动化、智能化分析对于AI需求

通常,我们分析日志,是为了两个目标:

  • 对数据有个整体的概览,例如,生成一天内的报表。
  • 对异常数据进行挖掘,例如,对特殊的日志进行告警。

日志分析,通常对分析者有这些要求:

  1. 对业务数据的熟悉程度要求比较高。
  2. 要求开发者具备搭建分析系统的能力。
  3. 对分析算法足够的熟悉。

通常分析日志,可以借助于流计算系统来做实时计算、或者借助elasticsearch做搜索。日志服务,提供了一整套完整的日志收集、消费、搜索、计算的平台。云计算提供的平台解放了开发者,开发者不再需要把精力消耗在日志支撑系统的维护上,把自己的时间投入到自己的主营业务上,会获得最大的回报。

不仅如此,日志服务还提供了了一些智能化分析日志的手段。在日志服务控制台,左侧快速查询栏目,提供了对数字列的分类统计,可以看出数字列的分布,集中分布在哪些地方,有哪些特殊值。

image.png

只从Alpha GO战胜李世石之后,人们终于认识到,机器学习用来预测的准确率,已经达到了人类智能的水平。AI,也可以帮我们来完成一些传统日志分析系统无法完成的工作,例如数据分类、离群数据分析等。今天我们介绍日志服务的快速分析所使用的无监督机器学习:决策树算法,并且通过样例来演示如何使用决策树来挖掘异常数据。

决策树算法简介

机器学习的算法繁多,其中很多算法是一类算法,而有些算法又是从其他算法中衍生出来的,因此我们可以按照不同的角度将其分类。按照学习方式分类,包括监督式学习,无监督学习,半监督学习,强化学习。其中,决策树属于无监督学习。无监督学习,不需要人工标注数据集,依赖于算法本身来预测数据。

数值列的分类也可以使用决策树算法。下图描述如果迭代的把数据归类到对应的桶中。

image.png

对于每一轮迭代:

  1. 初始化是是N个桶。
  2. 新加入一个数据,变成N+1个桶,并把N+1个桶排序。
  3. 计算相邻两个桶之间的距离,并且选择距离最小的两个桶合并成一个桶,重新计算新桶的平均值。
  4. 重复步骤1。

上述是基本的算法过程。详细的算法描述见论文:
`Yael Ben-Haim and Elad Tom-Tov, "A streaming parallel decision tree algorithm",
J. Machine Learning Research 11 (2010), pp. 849--872.`

决策树算法分析日志案例

今天上述的数值分类算法已经在日志服务中提供了,参考文档numeric_histogram

查找异常值

首先看所有值的

* | select count(1) , latency group by  latency

image.png

从结果中看,latency=1的值明显偏离其他数值。我们使用numeric_histogram把latency列分成两类:

* | select numeric_histogram(2,latency)

获取结果中包含两个桶,显示每个桶的平均值。 一个桶的均值是1,个数为100个;另一个桶均值是11.23,个数为1300。可以看出,均值为1的桶明显偏离了整体的均值。

image.png

同样的,划分3个桶

* | select numeric_histogram(3,latency)

三个桶的均值分别是1,11,12.5:

image.png

整体概括日志

我们都知道,数值列的分布范围比较大,无法使用group by进行计算,但我们可以使用numeric_histogram函数,来对数值列进行group by。

从计算结果中可以看到,latency大部分分布于308.242k左右。

image.png

更多经常内容

SQL分析语法
5分钟搭建网站实时分析:Grafana+日志服务实战
从日志到双十一大屏只要一步:LOG/SLS+DataV 打通
自建ELK vs 日志服务(SLS)全方位对比

试用日志服务

查询链接
dashboard链接

以下5个子帐号供试用,请随机选择一个登录,若登录不成功请换一个子帐号尝试:

登录地址 用户名 密码
链接 sls_reader1@1654218965343050 pnX-32m-MHH-xbm
链接 sls_reader2@1654218965343050 pnX-32m-MHH-xbm
链接 sls_reader3@1654218965343050 pnX-32m-MHH-xbm
链接 sls_reader4@1654218965343050 pnX-32m-MHH-xbm
链接 sls_reader5@1654218965343050 pnX-32m-MHH-xbm

相关实践学习
通过日志服务实现云资源OSS的安全审计
本实验介绍如何通过日志服务实现云资源OSS的安全审计。
目录
相关文章
|
4月前
|
人工智能 供应链 数据可视化
一文读懂AI引擎与Together规则引擎重塑智能决策
从1950年图灵提出人工智能设想到如今AI引擎实现自主决策,Together规则引擎正成为智能决策核心。它通过动态规划、多工具调用与持续学习机制,赋能供应链、财务、定价等场景,提升决策透明度与效率。Together助力AI引擎突破落地瓶颈,推动企业管理迈向“决策即服务”新时代。
|
4月前
|
SQL 传感器 人工智能
生成更智能,调试更轻松,SLS SQL Copilot 焕新登场!
阿里云日志服务(SLS)推出智能分析助手 SLS SQL Copilot,融合 AI 技术与日志分析最佳实践,将自然语言转换为 SQL 查询,降低使用门槛,提升查询效率。其具备原生集成、智能语义理解与高效执行能力,助力用户快速洞察日志数据价值,实现智能化日志分析新体验。
285 1
|
5月前
|
机器学习/深度学习 人工智能 算法
从人工决策到AI自主规划:2025物流配送管理工具的智能化升级
物流配送管理工具正经历技术革新,从手工调度1.0迈向数字孪生与AI驱动的4.0时代。新一代系统融合IoT、强化学习与路径优化算法,实现智能调度、实时执行与资源优化。多模态感知、自适应路由与弹性网络设计推动物流数字化转型。未来,量子计算、自主物流网络与认知型AI将重塑行业格局,助力物流向高效、绿色、韧性发展。
883 0
|
4月前
|
SQL 传感器 人工智能
生成更智能,调试更轻松,SLS SQL Copilot 焕新登场!
本文是阿里云日志服务(SLS)首次对外系统性地揭秘 SLS SQL Copilot 背后的产品理念、架构设计与核心技术积淀。我们将带你深入了解,这一智能分析助手如何从用户真实需求出发,融合前沿 AI 能力与 SLS 十余年日志分析最佳实践,打造出面向未来的智能化日志分析体验。
414 34
|
6月前
|
人工智能 NoSQL Redis
企业级Agent系统中AI决策错误带来损失,如何通过HITL机制解决?
本文AI专家三桥君探讨了企业级Agent系统中Human-in-the-Loop(HITL)机制的关键作用,旨在解决AI在复杂业务场景中“聪明但错误”的决策问题。通过单机模式(LangGraph中断恢复)、工具调用管控(集中看守/自我管理)及分布式架构(FastAPI+Redis)三种方案,实现人类专家在关键节点的精准干预。三桥君还提出故障恢复策略与异步优化等企业级实践,强调HITL能有效降低AI决策风险,提升系统可靠性,为AI产品经理提供技术落地方向。
259 0
|
6月前
|
人工智能 运维 监控
日志太多根本看不过来?教你用AI,让日志自己“说人话”!
日志太多根本看不过来?教你用AI,让日志自己“说人话”!
1242 0
|
4月前
|
机器学习/深度学习 人工智能 资源调度
智能家居环境中的AI决策解释:实现以人为中心的可解释性——论文阅读
本文探讨智能家居中AI决策的可解释性,提出以人为中心的XAI框架。通过SHAP、DeepLIFT等技术提升模型透明度,结合用户认知与需求,构建三层解释体系,增强信任与交互效能。
348 19
智能家居环境中的AI决策解释:实现以人为中心的可解释性——论文阅读
|
3月前
|
存储 人工智能 前端开发
超越问答:深入理解并构建自主决策的AI智能体(Agent)
如果说RAG让LLM学会了“开卷考试”,那么AI智能体(Agent)则赋予了LLM“手和脚”,使其能够思考、规划并与真实世界互动。本文将深入剖析Agent的核心架构,讲解ReAct等关键工作机制,并带你一步步构建一个能够调用外部工具(API)的自定义Agent,开启LLM自主解决复杂任务的新篇章。
638 6
|
3月前
|
人工智能 监控 Java
Java与AI智能体:构建自主决策与工具调用的智能系统
随着AI智能体技术的快速发展,构建能够自主理解任务、制定计划并执行复杂操作的智能系统已成为新的技术前沿。本文深入探讨如何在Java生态中构建具备工具调用、记忆管理和自主决策能力的AI智能体系统。我们将完整展示从智能体架构设计、工具生态系统、记忆机制到多智能体协作的全流程,为Java开发者提供构建下一代自主智能系统的完整技术方案。
534 4

相关产品

  • 日志服务