Hadoop Hive与Hbase关系 整合

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
简介:
用hbase做数据库,但因为hbase没有类sql查询方式,所以操作和计算数据很不方便,于是整合hive,让hive支撑在hbase数据库层面 的 hql查询.hive也即 做数据仓库

1. 基于Hadoop+Hive架构对海量数据进行查询:http://blog.csdn.net/kunshan_shenbin/article/details/7105319
2. HBase 0.90.5 + Hadoop 1.0.0 集成:http://blog.csdn.net/kunshan_shenbin/article/details/7209990
本文的目的是要讲述怎样让Hbase和Hive能互相訪问,让Hadoop/Hbase/Hive协同工作。合为一体。


本文測试步骤主要參考自:http://running.iteye.com/blog/898399 
当然。这边博文也是依照官网的步骤来的:http://wiki.apache.org/hadoop/Hive/HBaseIntegration 
1. 拷贝hbase-0.90.5.jar和zookeeper-3.3.2.jar到hive/lib下。 
注意:怎样hive/lib下已经存在这两个文件的其它版本号(比如zookeeper-3.3.1.jar),建议删除后使用hbase下的相关版本号。 

2. 改动hive/conf下hive-site.xml文件。在底部加入例如以下内容:

[html] view plaincopy
<!--  
<property>  
  <name>hive.exec.scratchdir</name>   
  <value>/usr/local/hive/tmp</value>   

</property>   
-->  
  
<property>   
  <name>hive.querylog.location</name>   
  <value>/usr/local/hive/logs</value>   
</property>   
  
<property>  
  <name>hive.aux.jars.path</name>   
  <value>file:///usr/local/hive/lib/hive-hbase-handler-0.8.0.jar,file:///usr/local/hive/lib/hbase-0.90.5.jar,file:///usr/local/hive/lib/zookeeper-3.3.2.jar</value>  

</property>  
注意:假设hive-site.xml不存在则自行创建,或者把hive-default.xml.template文件改名后使用。 
详细请參见:http://blog.csdn.net/kunshan_shenbin/article/details/7210020 

3. 拷贝hbase-0.90.5.jar到全部hadoop节点(包含master)的hadoop/lib下。


4. 拷贝hbase/conf下的hbase-site.xml文件到全部hadoop节点(包含master)的hadoop/conf下。


注意。hbase-site.xml文件配置信息參照:http://blog.csdn.net/kunshan_shenbin/article/details/7209990
注意,假设3,4两步跳过的话。执行hive时非常可能出现例如以下错误:

[html] view plaincopy
org.apache.hadoop.hbase.ZooKeeperConnectionException: HBase is able to connect to ZooKeeper but the connection closes immediately.   
This could be a sign that the server has too many connections (30 is the default). Consider inspecting your ZK server logs for that error and   
then make sure you are reusing HBaseConfiguration as often as you can. See HTable's javadoc for more information. at org.apache.hadoop.  
hbase.zookeeper.ZooKeeperWatcher. 
參考:http://blog.sina.com.cn/s/blog_410d18710100vlbq.html 

如今能够尝试启动Hive了。 
单节点启动:

> bin/hive -hiveconf hbase.master=master:60000

集群启动:

> bin/hive -hiveconf hbase.zookeeper.quorum=slave

怎样hive-site.xml文件里没有配置hive.aux.jars.path,则能够依照例如以下方式启动。

> bin/hive --auxpath /usr/local/hive/lib/hive-hbase-handler-0.8.0.jar, /usr/local/hive/lib/hbase-0.90.5.jar, /usr/local/hive/lib/zookeeper-3.3.2.jar -hiveconf hbase.zookeeper.quorum=slave

接下来能够做一些測试了。


1.创建hbase识别的数据库: 
[sql] view plaincopy 
CREATE TABLE hbase_table_1(key int, value string)  
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'  
WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:val")  
TBLPROPERTIES ("hbase.table.name" = "xyz");  
hbase.table.name 定义在hbase的table名称 
hbase.columns.mapping 定义在hbase的列族 
2.使用sql导入数据 
a) 新建hive的数据表 
[sql] view plaincopy 
<span><span></span></span>hive> CREATE TABLE pokes (foo INT, bar STRING);  
b) 批量插入数据 
[sql] view plaincopy

hive> LOAD DATA LOCAL INPATH './examples/files/kv1.txt' OVERWRITE INTO TABLE 

pokes;  
c) 使用sql导入hbase_table_1 
[sql] view plaincopy 
hive> INSERT OVERWRITE TABLE hbase_table_1 SELECT * FROM pokes WHERE foo=86;  
3. 查看数据 
[sql] view plaincopy 
hive> select * from  hbase_table_1;  
这时能够登录Hbase去查看数据了. 
> /usr/local/hbase/bin/hbase shell 
hbase(main):001:0> describe 'xyz'   
hbase(main):002:0> scan 'xyz'   
hbase(main):003:0> put 'xyz','100','cf1:val','www.360buy.com' 
这时在Hive中能够看到刚才在Hbase中插入的数据了。


hive> select * from hbase_table_1 
4. hive訪问已经存在的hbase 
使用CREATE EXTERNAL TABLE 
[sql] view plaincopy 
CREATE EXTERNAL TABLE hbase_table_2(key int, value string)  
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'  
WITH SERDEPROPERTIES ("hbase.columns.mapping" = "cf1:val")  
TBLPROPERTIES("hbase.table.name" = "some_existing_table");  


多列和多列族(Multiple Columns and Families) 
1.创建数据库 
Java代码  
CREATE TABLE hbase_table_2(key int, value1 string, value2 int, value3 int)   
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'  
WITH SERDEPROPERTIES (  
"hbase.columns.mapping" = ":key,a:b,a:c,d:e"  
);  

2.插入数据 
Java代码  
INSERT OVERWRITE TABLE hbase_table_2 SELECT foo, bar, foo+1, foo+2   
FROM pokes WHERE foo=98 OR foo=100;  


这个有3个hive的列(value1和value2,value3),2个hbase的列族(a,d) 
Hive的2列(value1和value2)相应1个hbase的列族(a。在hbase的列名称b,c)。hive的另外1列(value3)相应列(e)位于列族(d)

3.登录hbase查看结构 
Java代码 

hbase(main):003:0> describe "hbase_table_2"  
DESCRIPTION                                                             ENABLED                                 
 {NAME => 'hbase_table_2', FAMILIES => [{NAME => 'a', COMPRESSION => 'N true                                    
 ONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN_M                                         
 EMORY => 'false', BLOCKCACHE => 'true'}, {NAME => 'd', COMPRESSION =>                                          
 'NONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN                                         
 _MEMORY => 'false', BLOCKCACHE => 'true'}]}                                                                    
1 row(s) in 1.0630 seconds 
4.查看hbase的数据 
Java代码 

hbase(main):004:0> scan 'hbase_table_2'  
ROW                          COLUMN+CELL                                                                        
 100                         column=a:b, timestamp=1297695262015, value=val_100                                 
 100                         column=a:c, timestamp=1297695262015, value=101                                     
 100                         column=d:e, timestamp=1297695262015, value=102                                     
 98                          column=a:b, timestamp=1297695242675, value=val_98                                  
 98                          column=a:c, timestamp=1297695242675, value=99                                      
 98                          column=d:e, timestamp=1297695242675, value=100                                     
2 row(s) in 0.0380 seconds 

5.在hive中查看 
Java代码 

hive> select * from hbase_table_2;  
OK  
100     val_100 101     102  
98      val_98  99      100  
Time taken: 3.238 seconds  
參考资料: 
http://running.iteye.com/blog/898399 
http://heipark.iteye.com/blog/1150648 
http://www.javabloger.com/article/apache-hadoop-hive-hbase-integration.html






本文转自mfrbuaa博客园博客,原文链接:http://www.cnblogs.com/mfrbuaa/p/5094133.html,如需转载请自行联系原作者


相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
&nbsp; 相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情:&nbsp;https://cn.aliyun.com/product/hbase &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
3月前
|
SQL 分布式计算 Hadoop
手把手的教你搭建hadoop、hive
手把手的教你搭建hadoop、hive
237 1
|
3月前
|
分布式计算 Hadoop Shell
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
107 4
|
3月前
|
SQL 分布式计算 Hadoop
Hadoop-37 HBase集群 JavaAPI 操作3台云服务器 POM 实现增删改查调用操作 列族信息 扫描全表
Hadoop-37 HBase集群 JavaAPI 操作3台云服务器 POM 实现增删改查调用操作 列族信息 扫描全表
49 3
|
3月前
|
分布式计算 Hadoop Shell
Hadoop-36 HBase 3节点云服务器集群 HBase Shell 增删改查 全程多图详细 列族 row key value filter
Hadoop-36 HBase 3节点云服务器集群 HBase Shell 增删改查 全程多图详细 列族 row key value filter
73 3
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
125 3
|
3月前
|
SQL 分布式计算 Hadoop
Hadoop-34 HBase 安装部署 单节点配置 hbase-env hbase-site 超详细图文 附带配置文件
Hadoop-34 HBase 安装部署 单节点配置 hbase-env hbase-site 超详细图文 附带配置文件
126 2
|
3月前
|
存储 分布式计算 Hadoop
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
76 2
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
153 0
|
8月前
|
SQL 数据采集 数据挖掘
大数据行业应用之Hive数据分析航班线路相关的各项指标
大数据行业应用之Hive数据分析航班线路相关的各项指标
219 1
|
3月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
90 0

热门文章

最新文章

相关实验场景

更多