算法和数据结构~排序算法

简介:

排序算法种类

排序是指将元素集合按照规定的顺序排列。通常有两种排序方法,升序排列和降序排列。例如,对整数集{5,2,7,1}进行升序排列,结果为{1,2,5,7},对其进行降序排列结果为{7,5,2,1}。总的来说,排序的目的是使数据能够以更有意义的形式表现出来。虽然排序最显著的应用是排列数据以显示它,但它往往可以用来解决其他的问题,特别是作为某些已成型算法的一部分。

总的来说,排序算法分为两大类:比较排序和线性时间排序。比较排序依赖于比较和交换来将元素移动到正确的位置上。令人惊讶的是,并不是所有的排序算法都依赖于比较。对于那些确实依赖于比较来进行排序的算法来说,它们的运行时间往往不可能小于O(nlgn)。对于线性时间排序,从它的名字就可以看出,它的运行时间往往与它处理的数据元素个数成正比,即为O(n)。遗憾的是,线性时间排序依赖于数据集合中的某些特征,所以我们并不是在所有的场合都能够使用它。某些排序算法只使用数据本身的存储空间来处理和输出数据(这些称为就地排序),而有一些则需要额外的空间来处理和输出数据(虽然可能最终结果还是会拷贝到原始的内存空间中)。
  搜索就是在一个数据集中找到一个元素的位置,它可用于任何任务中。一种最简单的、不需要费任何脑筋的搜索方法是:简单地从数据集的一端查找到另一端。这就是所谓的线性搜索。通常,线性搜索用在那些对随机访问支持得不太好的数据结构中,例如:链表(见第5章)。另一种方法是使用二分查找,这会在本章中介绍。还有一些搜索方法专门用于特定的数据结构,例如哈希表。

插入排序

插入排序虽然不是最有效的排序方法,但它简单,并且不需要额外的存储空间。其最佳应用场景是对一个小的数据集合进行递增排序。

描 述 利用插入排序将数组data中的元素进行排序。data中元素的个数由size决定。而每个元素的大小由esize决定。函数指针compare会指 向一个用户定义的函数来比较元素大小。在递增排序中,如果key1>key2,函数返回1;如果key1=key2,函数返回0;如果 key1<key2,函数返回-1。在递减排序中,返回值相反。当issort返回时,data包含已排序的元素。
复杂度 O(n2),n为要排序的元素的个数。

快速排序

在一般情况下,一致认为快速排序是最好的一种排序算法,而且不需要额外的存储空间。其最佳应用场合是应用于大型数据集。

描述 利用快速排序将数组data中的元素进行排序。数组中的元素个数由size决定。而每个元素的大小由esize决定。参数i和k定义当前进行排序的两个部分,其值分别初始化为0和size-1。函数指针compare会指向一个用户定义的函数来比较元素大小。其函数功能与issort中描述的一样。当qksort返回时,data包含已排序的元素。
复杂度 O(nlg n),n为要被排序的元素的个数。

归并排序

归并排序基本上与快速排序算法的性能相同,但它需要使用两倍于快速排序的存储空间。而具有讽刺意味的是,其最佳应用场合是在超大数据集中,因为归并排序的原理就是对原始的乱序数据不断进行对半分割。

描述 利用归并排序将数组data中的元素进行排序。数组中的元素个数由size决定。而每个元素的大小由esize决定。参数i和k定义当前进行排序的两个部分,其值分别初始化为0和size-1。函数指针compare会指向一个用户定义的函数来比较元素大小。其函数功能与issort中描述的一样。当mgsort返回时,data中包含已排序的元素。
复杂度 O(nlg n),n为要排序的元素的个数。

计数排序

计数排序是一种稳定的线性时间排序算法,当知道数据集中整数的最大值的情况下会经常用到此算法。它主要用来实现基数排序

描述 利用计数排序将数组data中的整数进行排序。data中的元素个数由size决定。参数k为data中最大的整数加1。当ctsort返回时,data中包含已排序的元素。
复杂度 O(n+k),n为要排序的元素的个数,k为data中最大的整数加1。

基数排序

基数排序是逐位对元素进行排序的线性时间排序算法。基数排序适用于固定大小的元素集,并且其中的元素易于分割,且易于用整数表示。

描述 利用计数排序将数组data中的整数进行排序。数组data中整数的个数由size决定。参数p指定每个整数包含的位数,k指定基数。当rxsort返回时,data包含已排序的整数。
复杂度 O(pn+pk),n为要排序的元素的个数,k为基数,p为位的个。

感谢各位的阅读!今天主要吃掉这个排序算法,也是面试时经常会被问到的,哈哈!

本文转自博客园张占岭(仓储大叔)的博客,原文链接:算法和数据结构~排序算法,如需转载请自行联系原博主。

目录
相关文章
|
3月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
91 1
|
16天前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
79 29
|
16天前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
72 25
|
16天前
|
存储 人工智能 算法
C 408—《数据结构》算法题基础篇—数组(通俗易懂)
408考研——《数据结构》算法题基础篇之数组。(408算法题的入门)
58 23
|
1月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
51 2
|
2月前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
70 20
|
3月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
3月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
99 1
|
3月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
332 9
|
3月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
54 1

热门文章

最新文章