算法和数据结构~排序算法

简介:

排序算法种类

排序是指将元素集合按照规定的顺序排列。通常有两种排序方法,升序排列和降序排列。例如,对整数集{5,2,7,1}进行升序排列,结果为{1,2,5,7},对其进行降序排列结果为{7,5,2,1}。总的来说,排序的目的是使数据能够以更有意义的形式表现出来。虽然排序最显著的应用是排列数据以显示它,但它往往可以用来解决其他的问题,特别是作为某些已成型算法的一部分。

总的来说,排序算法分为两大类:比较排序和线性时间排序。比较排序依赖于比较和交换来将元素移动到正确的位置上。令人惊讶的是,并不是所有的排序算法都依赖于比较。对于那些确实依赖于比较来进行排序的算法来说,它们的运行时间往往不可能小于O(nlgn)。对于线性时间排序,从它的名字就可以看出,它的运行时间往往与它处理的数据元素个数成正比,即为O(n)。遗憾的是,线性时间排序依赖于数据集合中的某些特征,所以我们并不是在所有的场合都能够使用它。某些排序算法只使用数据本身的存储空间来处理和输出数据(这些称为就地排序),而有一些则需要额外的空间来处理和输出数据(虽然可能最终结果还是会拷贝到原始的内存空间中)。
  搜索就是在一个数据集中找到一个元素的位置,它可用于任何任务中。一种最简单的、不需要费任何脑筋的搜索方法是:简单地从数据集的一端查找到另一端。这就是所谓的线性搜索。通常,线性搜索用在那些对随机访问支持得不太好的数据结构中,例如:链表(见第5章)。另一种方法是使用二分查找,这会在本章中介绍。还有一些搜索方法专门用于特定的数据结构,例如哈希表。

插入排序

插入排序虽然不是最有效的排序方法,但它简单,并且不需要额外的存储空间。其最佳应用场景是对一个小的数据集合进行递增排序。

描 述 利用插入排序将数组data中的元素进行排序。data中元素的个数由size决定。而每个元素的大小由esize决定。函数指针compare会指 向一个用户定义的函数来比较元素大小。在递增排序中,如果key1>key2,函数返回1;如果key1=key2,函数返回0;如果 key1<key2,函数返回-1。在递减排序中,返回值相反。当issort返回时,data包含已排序的元素。
复杂度 O(n2),n为要排序的元素的个数。

快速排序

在一般情况下,一致认为快速排序是最好的一种排序算法,而且不需要额外的存储空间。其最佳应用场合是应用于大型数据集。

描述 利用快速排序将数组data中的元素进行排序。数组中的元素个数由size决定。而每个元素的大小由esize决定。参数i和k定义当前进行排序的两个部分,其值分别初始化为0和size-1。函数指针compare会指向一个用户定义的函数来比较元素大小。其函数功能与issort中描述的一样。当qksort返回时,data包含已排序的元素。
复杂度 O(nlg n),n为要被排序的元素的个数。

归并排序

归并排序基本上与快速排序算法的性能相同,但它需要使用两倍于快速排序的存储空间。而具有讽刺意味的是,其最佳应用场合是在超大数据集中,因为归并排序的原理就是对原始的乱序数据不断进行对半分割。

描述 利用归并排序将数组data中的元素进行排序。数组中的元素个数由size决定。而每个元素的大小由esize决定。参数i和k定义当前进行排序的两个部分,其值分别初始化为0和size-1。函数指针compare会指向一个用户定义的函数来比较元素大小。其函数功能与issort中描述的一样。当mgsort返回时,data中包含已排序的元素。
复杂度 O(nlg n),n为要排序的元素的个数。

计数排序

计数排序是一种稳定的线性时间排序算法,当知道数据集中整数的最大值的情况下会经常用到此算法。它主要用来实现基数排序

描述 利用计数排序将数组data中的整数进行排序。data中的元素个数由size决定。参数k为data中最大的整数加1。当ctsort返回时,data中包含已排序的元素。
复杂度 O(n+k),n为要排序的元素的个数,k为data中最大的整数加1。

基数排序

基数排序是逐位对元素进行排序的线性时间排序算法。基数排序适用于固定大小的元素集,并且其中的元素易于分割,且易于用整数表示。

描述 利用计数排序将数组data中的整数进行排序。数组data中整数的个数由size决定。参数p指定每个整数包含的位数,k指定基数。当rxsort返回时,data包含已排序的整数。
复杂度 O(pn+pk),n为要排序的元素的个数,k为基数,p为位的个。

感谢各位的阅读!今天主要吃掉这个排序算法,也是面试时经常会被问到的,哈哈!

本文转自博客园张占岭(仓储大叔)的博客,原文链接:算法和数据结构~排序算法,如需转载请自行联系原博主。

目录
相关文章
|
5月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
159 1
|
5月前
|
存储 搜索推荐 算法
加密算法、排序算法、字符串处理及搜索算法详解
本文涵盖四大类核心技术知识。加密算法部分介绍了对称加密(如 AES)、非对称加密(如 RSA)、哈希摘要(如 SHA-2)、签名算法的特点及密码存储方案(加盐、BCrypt 等)。 排序算法部分分类讲解了比较排序(冒泡、选择、插入、归并、快排、堆排序)和非比较排序(计数、桶、基数排序)的时间复杂度、适用场景及实现思路,强调混合排序的工业应用。 字符串处理部分包括字符串反转的双指针法,及项目中用正则进行表单校验、网页爬取、日志处理的实例。 搜索算法部分详解了二分查找的实现(双指针与中间索引计算)和回溯算法的概念(递归 + 剪枝),以 N 皇后问题为例说明回溯应用。内容全面覆盖算法原理与实践
187 0
|
5月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
151 0
|
9月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
287 10
 算法系列之数据结构-二叉树
|
10月前
|
存储 搜索推荐 算法
算法系列之排序算法-堆排序
堆排序(Heap Sort)是一种基于堆数据结构的比较排序算法。它的时间复杂度为 $O(nlogn)$,并且是一种原地排序算法(即不需要额外的存储空间)。堆排序的核心思想是利用堆的性质来维护一个最大堆或最小堆,然后逐步将堆顶元素(最大值或最小值)取出,放到数组的末尾,最终得到一个有序的数组。
255 8
算法系列之排序算法-堆排序
|
9月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
244 3
 算法系列之数据结构-Huffman树
|
9月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
351 22
|
9月前
|
JavaScript 前端开发 算法
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
10月前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
364 30
|
10月前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
455 25