Apache Kylin的核心概念

简介:
1、表(table):This is definition of hive tables as source of cubes,在build cube 之前,必须同步在 kylin中。
2、模型(model):模型描述了一个星型模式的数据结构,它定义了一个事实表(Fact Table)和多个查找表(Lookup Table)的连接和过滤关系。
3、 Cube 描述:描述一个Cube实例的定义和配置选项,包括使用了哪个数据模型、包含哪些维度和度量、如何将数据进行分区、如何处理自动合并等等。
4、Cube实例:通过Cube描述Build得到,包含一个或者多个Cube Segment。
5、分区(Partition):用户可以在Cube描述中使用一个DATA/STRING的列作为分区的列,从而将一个Cube按照日期分割成多个segment。
6、立方体段(cube segmetn):它是立方体构建(build)后的数据载体,一个 segment 映射hbase中的一张表,立方体实例构建(build)后,会产生一个新的segment,一旦某个已经构建的立方体的原始数据发生变化,只需刷新(fresh)变化的时间段所关联的segment即可。
7、聚合组:每一个聚合组是一个维度的子集,在内部通过组合构建cuboid。
8、作业(job):对立方体实例发出构建(build)请求后,会产生一个作业。该作业记录了立方体实例build时的每一步任务信息。作业的状态信息反映构建立方体实例的结果信息。如作业执行的状态信息为RUNNING 时,表明立方体实例正在被构建;若作业状态信息为FINISHED ,表明立方体实例构建成功;若作业状态信息为ERROR ,表明立方体实例构建失败!


 
 

DIMENSION & MEASURE的种类

  • Mandotary:强制维度,所有cuboid必须包含的维度。
  • Hierarchy:层次关系维度,维度之间具有层次关系性,只需要保留一定层次关系的cuboid即可。
  • Derived:衍生维度,在lookup 表中,有一些维度可以通过它的主键衍生得到,所以这些维度将不参加cuboid的构建。
  • Count Distinct(HyperLogLog) :直接进行count distinct是很难去计算的,一个近似的算法HyperLogLog可以保持错误率在一个很低的范围内。
  • Count Distinct(Precise):将基于RoaringBitMap进行计算,目前只支持int和BigInt。

 

Cube Action种类

  • BUILD:给定一个分区列指定的时间间隔,对Cube进行Build,创建一个新的cube Segment。
  • REFRESH:这个操作,将在一些分期周期内对cube Segment进行重新build。
  • MERGE:这个操作将合并多个cube segments。这个操作可以在构建cube时,设置为自动完成。
  • PURGE:清理一个Cube实例下的segment,但是不会删除HBase表中的Tables。

 

Job状态

  NEW:表示一个job已经被创建。 PENDING:表示一个job已经被job Scheduler提交,等待执行资源。
RUNNING:表示一个job正在运行。 FINISHED:表示一个job成功完成。
ERROR:表示一个job因为错误退出。 DISCARDED:表示一个job被用户取消。

 

Job执行

  RESUME:这个操作将从失败的Job的最后一个成功点继续执行该Job。 DISCARD:无论工作的状态,用户可以结束它和释放资源。


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/7404416.html,如需转载请自行联系原作者

相关文章
|
8月前
|
分布式计算 测试技术 Apache
探索Apache Hudi核心概念 (3) - Compaction
探索Apache Hudi核心概念 (3) - Compaction
153 5
|
8月前
|
存储 分布式计算 测试技术
探索Apache Hudi核心概念 (2) - File Sizing
探索Apache Hudi核心概念 (2) - File Sizing
100 2
|
3月前
|
消息中间件 分布式计算 大数据
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
110 5
|
3月前
|
存储 SQL 分布式计算
大数据-162 Apache Kylin 全量增量Cube的构建 Segment 超详细记录 多图
大数据-162 Apache Kylin 全量增量Cube的构建 Segment 超详细记录 多图
79 3
|
3月前
|
Java 大数据 数据库连接
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
66 2
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
|
3月前
|
SQL 分布式计算 NoSQL
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
51 1
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
|
2月前
|
消息中间件 存储 负载均衡
Apache Kafka核心概念解析:生产者、消费者与Broker
【10月更文挑战第24天】在数字化转型的大潮中,数据的实时处理能力成为了企业竞争力的重要组成部分。Apache Kafka 作为一款高性能的消息队列系统,在这一领域占据了重要地位。通过使用 Kafka,企业可以构建出高效的数据管道,实现数据的快速传输和处理。今天,我将从个人的角度出发,深入解析 Kafka 的三大核心组件——生产者、消费者与 Broker,希望能够帮助大家建立起对 Kafka 内部机制的基本理解。
111 2
|
3月前
|
SQL 存储 分布式计算
大数据-157 Apache Kylin 背景 历程 特点 场景 架构 组件 详解
大数据-157 Apache Kylin 背景 历程 特点 场景 架构 组件 详解
56 9
|
3月前
|
分布式计算 大数据 分布式数据库
大数据-158 Apache Kylin 安装配置详解 集群模式启动(一)
大数据-158 Apache Kylin 安装配置详解 集群模式启动(一)
74 5
|
3月前
|
SQL 分布式计算 大数据
大数据-160 Apache Kylin 构建Cube 按照日期构建Cube 详细记录
大数据-160 Apache Kylin 构建Cube 按照日期构建Cube 详细记录
63 2

热门文章

最新文章

推荐镜像

更多