spark-2.2.0-bin-hadoop2.6和spark-1.6.1-bin-hadoop2.6发行包自带案例全面详解(java、python、r和scala)之Basic包下的JavaSparkPi.java(图文详解)

简介:

spark-1.6.1-bin-hadoop2.6里Basic包下的JavaSparkPi.java

复制代码
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//package org.apache.spark.examples;
package zhouls.bigdata.Basic;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import java.util.ArrayList;  
import java.util.List;

/** 
 * Computes an approximation to pi
 * Usage: JavaSparkPi [slices]
 */
public final class JavaSparkPi {
  public static void main(String[] args) throws Exception {
      
        /*
       * 主函数:进行圆周率的计算  
       * 自己写的博客:http://www.cnblogs.com/zlslch/p/7455363.html
       */
    SparkConf sparkConf = new SparkConf().setAppName("JavaSparkPi").setMaster("local");
    JavaSparkContext jsc = new JavaSparkContext(sparkConf);

    int slices = (args.length == 1) ? Integer.parseInt(args[0]) : 2;//分片数
    int n = 100000 * slices;//(为避免溢出,n不超过int的最大值  )
    List<Integer> l = new ArrayList<Integer>(n);//List<Integer>类型 
    for (int i = 0; i < n; i++) {
      l.add(i);
    }

    JavaRDD<Integer> dataSet = jsc.parallelize(l, slices);

    int count = dataSet.map(new Function<Integer, Integer>() {//计数  
      @Override
      public Integer call(Integer integer) {
        double x = Math.random() * 2 - 1;//小于1的随机数  
        double y = Math.random() * 2 - 1;//小于1的随机数  
        return (x * x + y * y < 1) ? 1 : 0;//点到圆心的的值,小于1计数一次,超出1就不计算  
      }
    }).reduce(new Function2<Integer, Integer, Integer>() {//汇总累加落入的圆中的次数
      @Override
      public Integer call(Integer integer, Integer integer2) {
        return integer + integer2;
      }
    });

    System.out.println("Pi is roughly " + 4.0 * count / n);

    jsc.stop();
  }
}
复制代码

 

 

 

 

 

复制代码
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/D:/SoftWare/spark-1.6.1-bin-hadoop2.6/lib/spark-assembly-1.6.1-hadoop2.6.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/D:/SoftWare/spark-1.6.1-bin-hadoop2.6/lib/spark-examples-1.6.1-hadoop2.6.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
17/08/30 21:25:42 INFO SparkContext: Running Spark version 1.6.1
17/08/30 21:25:46 INFO SecurityManager: Changing view acls to: Administrator
17/08/30 21:25:46 INFO SecurityManager: Changing modify acls to: Administrator
17/08/30 21:25:46 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(Administrator); users with modify permissions: Set(Administrator)
17/08/30 21:25:51 INFO Utils: Successfully started service 'sparkDriver' on port 54482.
17/08/30 21:25:53 INFO Slf4jLogger: Slf4jLogger started
17/08/30 21:25:53 INFO Remoting: Starting remoting
17/08/30 21:25:54 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@169.254.28.160:54495]
17/08/30 21:25:54 INFO Utils: Successfully started service 'sparkDriverActorSystem' on port 54495.
17/08/30 21:25:54 INFO SparkEnv: Registering MapOutputTracker
17/08/30 21:25:54 INFO SparkEnv: Registering BlockManagerMaster
17/08/30 21:25:54 INFO DiskBlockManager: Created local directory at C:\Users\Administrator\AppData\Local\Temp\blockmgr-5e8e9432-30ff-424c-9ba7-14df937d809b
17/08/30 21:25:54 INFO MemoryStore: MemoryStore started with capacity 1131.0 MB
17/08/30 21:25:55 INFO SparkEnv: Registering OutputCommitCoordinator
17/08/30 21:25:55 INFO Utils: Successfully started service 'SparkUI' on port 4040.
17/08/30 21:25:55 INFO SparkUI: Started SparkUI at http://169.254.28.160:4040
17/08/30 21:25:55 INFO Executor: Starting executor ID driver on host localhost
17/08/30 21:25:56 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 54502.
17/08/30 21:25:56 INFO NettyBlockTransferService: Server created on 54502
17/08/30 21:25:56 INFO BlockManagerMaster: Trying to register BlockManager
17/08/30 21:25:56 INFO BlockManagerMasterEndpoint: Registering block manager localhost:54502 with 1131.0 MB RAM, BlockManagerId(driver, localhost, 54502)
17/08/30 21:25:56 INFO BlockManagerMaster: Registered BlockManager
17/08/30 21:25:58 INFO SparkContext: Starting job: reduce at JavaSparkPi.java:59
17/08/30 21:25:58 INFO DAGScheduler: Got job 0 (reduce at JavaSparkPi.java:59) with 2 output partitions
17/08/30 21:25:58 INFO DAGScheduler: Final stage: ResultStage 0 (reduce at JavaSparkPi.java:59)
17/08/30 21:25:58 INFO DAGScheduler: Parents of final stage: List()
17/08/30 21:25:58 INFO DAGScheduler: Missing parents: List()
17/08/30 21:25:58 INFO DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[1] at map at JavaSparkPi.java:52), which has no missing parents
17/08/30 21:25:59 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 2.3 KB, free 2.3 KB)
17/08/30 21:25:59 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 1417.0 B, free 3.7 KB)
17/08/30 21:25:59 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost:54502 (size: 1417.0 B, free: 1131.0 MB)
17/08/30 21:25:59 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1006
17/08/30 21:26:00 INFO DAGScheduler: Submitting 2 missing tasks from ResultStage 0 (MapPartitionsRDD[1] at map at JavaSparkPi.java:52)
17/08/30 21:26:00 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
17/08/30 21:26:00 WARN TaskSetManager: Stage 0 contains a task of very large size (978 KB). The maximum recommended task size is 100 KB.
17/08/30 21:26:00 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, localhost, partition 0,PROCESS_LOCAL, 1002120 bytes)
17/08/30 21:26:00 INFO Executor: Running task 0.0 in stage 0.0 (TID 0)
17/08/30 21:26:01 INFO Executor: Finished task 0.0 in stage 0.0 (TID 0). 1031 bytes result sent to driver
17/08/30 21:26:01 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, localhost, partition 1,PROCESS_LOCAL, 1002120 bytes)
17/08/30 21:26:01 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
17/08/30 21:26:01 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 1286 ms on localhost (1/2)
17/08/30 21:26:01 INFO Executor: Finished task 1.0 in stage 0.0 (TID 1). 1031 bytes result sent to driver
17/08/30 21:26:01 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 496 ms on localhost (2/2)
17/08/30 21:26:01 INFO DAGScheduler: ResultStage 0 (reduce at JavaSparkPi.java:59) finished in 1.581 s
17/08/30 21:26:01 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 
17/08/30 21:26:01 INFO DAGScheduler: Job 0 finished: reduce at JavaSparkPi.java:59, took 2.991489 s
Pi is roughly 3.13854
17/08/30 21:26:01 INFO SparkUI: Stopped Spark web UI at http://169.254.28.160:4040
17/08/30 21:26:01 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
17/08/30 21:26:01 INFO MemoryStore: MemoryStore cleared
17/08/30 21:26:01 INFO BlockManager: BlockManager stopped
17/08/30 21:26:01 INFO BlockManagerMaster: BlockManagerMaster stopped
17/08/30 21:26:01 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
17/08/30 21:26:01 INFO SparkContext: Successfully stopped SparkContext
17/08/30 21:26:01 INFO RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon.
17/08/30 21:26:01 INFO RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote transports.
17/08/30 21:26:01 INFO ShutdownHookManager: Shutdown hook called
17/08/30 21:26:01 INFO ShutdownHookManager: Deleting directory C:\Users\Administrator\AppData\Local\Temp\spark-e23e8bc3-e6c1-4462-ad2e-7ab0c8ddf341
复制代码

 

 

 

 

 

 

 

 

 

 

 

spark-2.2.0-bin-hadoop2.6里Basic包下的JavaSparkPi.java

 

 

复制代码
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//package org.apache.spark.examples;
package zhouls.bigdata.Basic;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SparkSession;

import java.util.ArrayList;
import java.util.List;

/**
 * Computes an approximation to pi
 * Usage: JavaSparkPi [partitions]
 */
public final class JavaSparkPi {
    
    /*
     * 主函数:进行圆周率的计算  
     * 自己写的博客:http://www.cnblogs.com/zlslch/p/7455363.html
     */
  public static void main(String[] args) throws Exception {
      
    /*
     * 下面代码片段是如何创建SparkSession
     */
    SparkSession spark = SparkSession
      .builder()
      .master("local")
      .appName("JavaSparkPi")
      .getOrCreate();
  
              
    JavaSparkContext jsc = new JavaSparkContext(spark.sparkContext());

    int slices = (args.length == 1) ? Integer.parseInt(args[0]) : 2;//分片数
    int n = 100000 * slices;//(为避免溢出,n不超过int的最大值  )
    List<Integer> l = new ArrayList<>(n);//List<Integer>类型 
    for (int i = 0; i < n; i++) {
      l.add(i);
    }

    JavaRDD<Integer> dataSet = jsc.parallelize(l, slices);

    int count = dataSet.map(integer -> {//计数  
      double x = Math.random() * 2 - 1;//小于1的随机数  
      double y = Math.random() * 2 - 1;//小于1的随机数  
      return (x * x + y * y <= 1) ? 1 : 0;//点到圆心的的值,小于1计数一次,超出1就不计算  
    }).reduce((integer, integer2) -> integer + integer2);//汇总累加落入的圆中的次数

    System.out.println("Pi is roughly " + 4.0 * count / n);

    spark.stop();
  }
}
复制代码

 

 

 

 

 

 

复制代码
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
17/08/30 21:29:46 INFO SparkContext: Running Spark version 2.2.0
17/08/30 21:29:47 INFO SparkContext: Submitted application: JavaSparkPi
17/08/30 21:29:47 INFO SecurityManager: Changing view acls to: Administrator
17/08/30 21:29:47 INFO SecurityManager: Changing modify acls to: Administrator
17/08/30 21:29:47 INFO SecurityManager: Changing view acls groups to: 
17/08/30 21:29:47 INFO SecurityManager: Changing modify acls groups to: 
17/08/30 21:29:47 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users  with view permissions: Set(Administrator); groups with view permissions: Set(); users  with modify permissions: Set(Administrator); groups with modify permissions: Set()
17/08/30 21:29:52 INFO Utils: Successfully started service 'sparkDriver' on port 54576.
17/08/30 21:29:52 INFO SparkEnv: Registering MapOutputTracker
17/08/30 21:29:53 INFO SparkEnv: Registering BlockManagerMaster
17/08/30 21:29:53 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
17/08/30 21:29:53 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
17/08/30 21:29:53 INFO DiskBlockManager: Created local directory at C:\Users\Administrator\AppData\Local\Temp\blockmgr-0685a26c-9751-4821-9fc4-4273633fb703
17/08/30 21:29:53 INFO MemoryStore: MemoryStore started with capacity 904.8 MB
17/08/30 21:29:53 INFO SparkEnv: Registering OutputCommitCoordinator
17/08/30 21:29:54 INFO Utils: Successfully started service 'SparkUI' on port 4040.
17/08/30 21:29:54 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://169.254.28.160:4040
17/08/30 21:29:54 INFO Executor: Starting executor ID driver on host localhost
17/08/30 21:29:54 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 54586.
17/08/30 21:29:54 INFO NettyBlockTransferService: Server created on 169.254.28.160:54586
17/08/30 21:29:54 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
17/08/30 21:29:54 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, 169.254.28.160, 54586, None)
17/08/30 21:29:54 INFO BlockManagerMasterEndpoint: Registering block manager 169.254.28.160:54586 with 904.8 MB RAM, BlockManagerId(driver, 169.254.28.160, 54586, None)
17/08/30 21:29:54 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 169.254.28.160, 54586, None)
17/08/30 21:29:54 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, 169.254.28.160, 54586, None)
17/08/30 21:29:55 INFO SharedState: Setting hive.metastore.warehouse.dir ('null') to the value of spark.sql.warehouse.dir ('file:/D:/Code/EclipsePaperCode/Spark220BinHadoop26ShouDongJava/spark-warehouse/').
17/08/30 21:29:55 INFO SharedState: Warehouse path is 'file:/D:/Code/EclipsePaperCode/Spark220BinHadoop26ShouDongJava/spark-warehouse/'.
17/08/30 21:29:57 INFO StateStoreCoordinatorRef: Registered StateStoreCoordinator endpoint
17/08/30 21:29:58 INFO SparkContext: Starting job: reduce at JavaSparkPi.java:65
17/08/30 21:29:58 INFO DAGScheduler: Got job 0 (reduce at JavaSparkPi.java:65) with 2 output partitions
17/08/30 21:29:58 INFO DAGScheduler: Final stage: ResultStage 0 (reduce at JavaSparkPi.java:65)
17/08/30 21:29:58 INFO DAGScheduler: Parents of final stage: List()
17/08/30 21:29:58 INFO DAGScheduler: Missing parents: List()
17/08/30 21:29:58 INFO DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[1] at map at JavaSparkPi.java:61), which has no missing parents
17/08/30 21:29:58 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 3.0 KB, free 904.8 MB)
17/08/30 21:29:59 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 1772.0 B, free 904.8 MB)
17/08/30 21:29:59 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 169.254.28.160:54586 (size: 1772.0 B, free: 904.8 MB)
17/08/30 21:29:59 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1006
17/08/30 21:29:59 INFO DAGScheduler: Submitting 2 missing tasks from ResultStage 0 (MapPartitionsRDD[1] at map at JavaSparkPi.java:61) (first 15 tasks are for partitions Vector(0, 1))
17/08/30 21:29:59 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
17/08/30 21:29:59 WARN TaskSetManager: Stage 0 contains a task of very large size (981 KB). The maximum recommended task size is 100 KB.
17/08/30 21:29:59 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, localhost, executor driver, partition 0, PROCESS_LOCAL, 1004822 bytes)
17/08/30 21:29:59 INFO Executor: Running task 0.0 in stage 0.0 (TID 0)
17/08/30 21:30:00 INFO Executor: Finished task 0.0 in stage 0.0 (TID 0). 824 bytes result sent to driver
17/08/30 21:30:00 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, localhost, executor driver, partition 1, PROCESS_LOCAL, 1004827 bytes)
17/08/30 21:30:00 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
17/08/30 21:30:00 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 1004 ms on localhost (executor driver) (1/2)
17/08/30 21:30:00 INFO Executor: Finished task 1.0 in stage 0.0 (TID 1). 824 bytes result sent to driver
17/08/30 21:30:00 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 334 ms on localhost (executor driver) (2/2)
17/08/30 21:30:00 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 
17/08/30 21:30:00 INFO DAGScheduler: ResultStage 0 (reduce at JavaSparkPi.java:65) finished in 1.202 s
17/08/30 21:30:00 INFO DAGScheduler: Job 0 finished: reduce at JavaSparkPi.java:65, took 1.929985 s
Pi is roughly 3.14214
17/08/30 21:30:00 INFO SparkUI: Stopped Spark web UI at http://169.254.28.160:4040
17/08/30 21:30:00 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
17/08/30 21:30:00 INFO MemoryStore: MemoryStore cleared
17/08/30 21:30:00 INFO BlockManager: BlockManager stopped
17/08/30 21:30:00 INFO BlockManagerMaster: BlockManagerMaster stopped
17/08/30 21:30:00 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
17/08/30 21:30:00 INFO SparkContext: Successfully stopped SparkContext
17/08/30 21:30:00 INFO ShutdownHookManager: Shutdown hook called
17/08/30 21:30:00 INFO ShutdownHookManager: Deleting directory C:\Users\Administrator\AppData\Local\Temp\spark-c6806fd3-2a53-4f00-b285-48751292ff44


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/7455363.html,如需转载请自行联系原作者
相关文章
|
1月前
|
人工智能 安全 Java
Java和Python在企业中的应用情况
Java和Python在企业中的应用情况
54 7
|
2月前
|
数据采集 缓存 Java
Python vs Java:爬虫任务中的效率比较
Python vs Java:爬虫任务中的效率比较
|
1月前
|
Java 程序员 开发工具
在比较Java和Python哪个更易学
在比较Java和Python哪个更易学
38 4
|
1月前
|
Java 程序员 Python
Java和Python
Java和Python
25 2
|
1月前
|
Java Android开发
Eclipse 创建 Java 包
Eclipse 创建 Java 包
33 1
|
1月前
|
jenkins Java 测试技术
如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例详细说明
本文介绍了如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例,详细说明了从 Jenkins 安装配置到自动构建、测试和部署的全流程。文中还提供了一个 Jenkinsfile 示例,并分享了实践经验,强调了版本控制、自动化测试等关键点的重要性。
74 3
|
1月前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
69 2
|
2月前
|
分布式计算 大数据 Java
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
43 1
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
|
1月前
|
Java 关系型数据库 数据库
面向对象设计原则在Java中的实现与案例分析
【10月更文挑战第25天】本文通过Java语言的具体实现和案例分析,详细介绍了面向对象设计的五大核心原则:单一职责原则、开闭原则、里氏替换原则、接口隔离原则和依赖倒置原则。这些原则帮助开发者构建更加灵活、可维护和可扩展的系统,不仅适用于Java,也适用于其他面向对象编程语言。
40 2
|
2月前
|
Java 数据库
案例一:去掉数据库某列中的所有英文,利用java正则表达式去做,核心:去掉字符串中的英文
这篇文章介绍了如何使用Java正则表达式从数据库某列中去除所有英文字符。
64 15