spark-2.2.0-bin-hadoop2.6和spark-1.6.1-bin-hadoop2.6发行包自带案例全面详解(java、python、r和scala)之Basic包下的SparkTC.scala(图文详解)

简介:

spark-1.6.1-bin-hadoop2.6里Basic包下的SparkTC.scala

 

 

复制代码
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
//package org.apache.spark.examples
package zhouls.bigdata

import scala.util.Random
import scala.collection.mutable
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._



/**
 * Transitive closure on a graph.
 */
object SparkTC {
  
  val numEdges = 200
  val numVertices = 100
  val rand = new Random(42)

  def generateGraph: Seq[(Int, Int)] = {
    val edges: mutable.Set[(Int, Int)] = mutable.Set.empty
    while (edges.size < numEdges) {
      val from = rand.nextInt(numVertices)
      val to = rand.nextInt(numVertices)
      if (from != to) edges.+=((from, to))
    }
    edges.toSeq
  }

  
  /*
   * 主函数
   */
  def main(args: Array[String]) {
    val sparkConf = new SparkConf().setAppName("SparkTC").setMaster("local")
    val spark = new SparkContext(sparkConf)
    val slices = if (args.length > 0) args(0).toInt else 2
    var tc = spark.parallelize(generateGraph, slices).cache()

    // Linear transitive closure: each round grows paths by one edge,
    // by joining the graph's edges with the already-discovered paths.
    // e.g. join the path (y, z) from the TC with the edge (x, y) from
    // the graph to obtain the path (x, z).

    // Because join() joins on keys, the edges are stored in reversed order.
    val edges = tc.map(x => (x._2, x._1))//翻转起点和终点,方便join, (x,y) (y,z) ==>(x,z) 需要翻转(x,y)为(y,x)才能join出正确结果

    // This join is iterated until a fixed point is reached.(不断join,union并计算个数直到不变)
    var oldCount = 0L
    var nextCount = tc.count()
    do {
      oldCount = nextCount
      // Perform the join, obtaining an RDD of (y, (z, x)) pairs,
      // then project the result to obtain the new (x, z) paths.
      tc = tc.union(tc.join(edges).map(x => (x._2._2, x._2._1))).distinct().cache()
      nextCount = tc.count()
    } while (nextCount != oldCount)

    println("TC has " + tc.count() + " edges.")
    spark.stop()
  }
}
// scalastyle:on println
复制代码

 

 

 

 

 

 

 

 

复制代码
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples

import scala.collection.mutable
import scala.util.Random
import org.apache.spark.sql.SparkSession

/**
 * Transitive closure on a graph.
 */
object SparkTC {
  
  val numEdges = 200
  val numVertices = 100
  val rand = new Random(42)

  /*
   * 1. 计算传递闭包(可到达路径数目)
     * 2. 自动生成图,使用可变Set存储起点,终点 
   */
  def generateGraph: Seq[(Int, Int)] = {
    val edges: mutable.Set[(Int, Int)] = mutable.Set.empty
    while (edges.size < numEdges) {
      val from = rand.nextInt(numVertices)
      val to = rand.nextInt(numVertices)
      if (from != to) edges.+=((from, to))
    }
    edges.toSeq
  }

  def main(args: Array[String]) {
    val spark = SparkSession
      .builder
      .master("local")
      .appName("SparkTC")
      .getOrCreate() 
      
    val slices = if (args.length > 0) args(0).toInt else 2
    var tc = spark.sparkContext.parallelize(generateGraph, slices).cache()

    // Linear transitive closure: each round grows paths by one edge,
    // by joining the graph's edges with the already-discovered paths.
    // e.g. join the path (y, z) from the TC with the edge (x, y) from
    // the graph to obtain the path (x, z).

    // Because join() joins on keys, the edges are stored in reversed order.
    val edges = tc.map(x => (x._2, x._1))//翻转起点和终点,方便join, (x,y) (y,z) ==>(x,z) 需要翻转(x,y)为(y,x)才能join出正确结果

    
    // This join is iterated until a fixed point is reached.(不断join,union并计算个数直到不变)
    var oldCount = 0L
    var nextCount = tc.count()
    do {
      oldCount = nextCount
      // Perform the join, obtaining an RDD of (y, (z, x)) pairs,
      // then project the result to obtain the new (x, z) paths.
      tc = tc.union(tc.join(edges).map(x => (x._2._2, x._2._1))).distinct().cache()
      nextCount = tc.count()
    } while (nextCount != oldCount)

    println("TC has " + tc.count() + " edges.")
    spark.stop()
  }
}
// scalastyle:on println


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/7457244.html,如需转载请自行联系原作者
相关文章
|
2月前
|
开发者 Python
如何在Python中管理模块和包的依赖关系?
在实际开发中,通常会结合多种方法来管理模块和包的依赖关系,以确保项目的顺利进行和可维护性。同时,要及时更新和解决依赖冲突等问题,以保证代码的稳定性和可靠性
58 4
|
3月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
206 6
|
2月前
|
测试技术 Python
手动解决Python模块和包依赖冲突的具体步骤是什么?
需要注意的是,手动解决依赖冲突可能需要一定的时间和经验,并且需要谨慎操作,避免引入新的问题。在实际操作中,还可以结合使用其他方法,如虚拟环境等,来更好地管理和解决依赖冲突😉。
|
2月前
|
持续交付 Python
如何在Python中自动解决模块和包的依赖冲突?
完全自动解决所有依赖冲突可能并不总是可行,特别是在复杂的项目中。有时候仍然需要人工干预和判断。自动解决的方法主要是提供辅助和便捷,但不能完全替代人工的分析和决策😉。
|
1月前
|
Python 容器
[oeasy]python048_用变量赋值_连等赋值_解包赋值_unpack_assignment _
本文介绍了Python中变量赋值的不同方式,包括使用字面量和另一个变量进行赋值。通过`id()`函数展示了变量在内存中的唯一地址,并探讨了变量、模块、函数及类类型的地址特性。文章还讲解了连等赋值和解包赋值的概念,以及如何查看已声明的变量。最后总结了所有对象(如变量、模块、函数、类)都有其类型且在内存中有唯一的引用地址,构成了Python系统的基石。
30 5
|
2月前
|
Python
Python的模块和包
总之,模块和包是 Python 编程中非常重要的概念,掌握它们可以帮助我们更好地组织和管理代码,提高开发效率和代码质量
45 5
|
2月前
|
数据可视化 Python
如何在Python中解决模块和包的依赖冲突?
解决模块和包的依赖冲突需要综合运用多种方法,并且需要团队成员的共同努力和协作。通过合理的管理和解决冲突,可以提高项目的稳定性和可扩展性
|
2月前
|
分布式计算 Java Hadoop
linux中HADOOP_HOME和JAVA_HOME删除后依然指向旧目录
通过以上步骤,可以有效地解决 `HADOOP_HOME`和 `JAVA_HOME`删除后依然指向旧目录的问题。确保在所有相关的配置文件中正确设置和删除环境变量,并刷新当前会话,使更改生效。通过这些措施,能够确保系统环境变量的正确性和一致性。
31 1
|
2月前
|
Java Android开发
Eclipse 创建 Java 包
Eclipse 创建 Java 包
36 1
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
138 2