Java并发编程:Callable、Future和FutureTask

简介:

Java并发编程:Callable、Future和FutureTask

  在前面的文章中我们讲述了创建线程的2种方式,一种是直接继承Thread,另外一种就是实现Runnable接口。

  这2种方式都有一个缺陷就是:在执行完任务之后无法获取执行结果。

  如果需要获取执行结果,就必须通过共享变量或者使用线程通信的方式来达到效果,这样使用起来就比较麻烦。

  而自从Java 1.5开始,就提供了Callable和Future,通过它们可以在任务执行完毕之后得到任务执行结果。

  今天我们就来讨论一下Callable、Future和FutureTask三个类的使用方法。以下是本文的目录大纲:

  一.Callable与Runnable

  二.Future

  三.FutureTask

  四.使用示例

  若有不正之处请多多谅解,并欢迎批评指正。

  请尊重作者劳动成果,转载请标明原文链接:

  http://www.cnblogs.com/dolphin0520/p/3949310.html

  

一.Callable与Runnable

  先说一下java.lang.Runnable吧,它是一个接口,在它里面只声明了一个run()方法:

1
2
3
public  interface  Runnable {
     public  abstract  void  run();
}

   由于run()方法返回值为void类型,所以在执行完任务之后无法返回任何结果。

  Callable位于java.util.concurrent包下,它也是一个接口,在它里面也只声明了一个方法,只不过这个方法叫做call():

1
2
3
4
5
6
7
8
9
public  interface  Callable<V> {
     /**
      * Computes a result, or throws an exception if unable to do so.
      *
      * @return computed result
      * @throws Exception if unable to compute a result
      */
     V call()  throws  Exception;
}

   可以看到,这是一个泛型接口,call()函数返回的类型就是传递进来的V类型。

  那么怎么使用Callable呢?一般情况下是配合ExecutorService来使用的,在ExecutorService接口中声明了若干个submit方法的重载版本:

1
2
3
<T> Future<T> submit(Callable<T> task);
<T> Future<T> submit(Runnable task, T result);
Future<?> submit(Runnable task);

  第一个submit方法里面的参数类型就是Callable。

  暂时只需要知道Callable一般是和ExecutorService配合来使用的,具体的使用方法讲在后面讲述。

  一般情况下我们使用第一个submit方法和第三个submit方法,第二个submit方法很少使用。

二.Future

  Future就是对于具体的Runnable或者Callable任务的执行结果进行取消、查询是否完成、获取结果。必要时可以通过get方法获取执行结果,该方法会阻塞直到任务返回结果。

  Future类位于java.util.concurrent包下,它是一个接口:

1
2
3
4
5
6
7
8
public  interface  Future<V> {
     boolean  cancel( boolean  mayInterruptIfRunning);
     boolean  isCancelled();
     boolean  isDone();
     V get()  throws  InterruptedException, ExecutionException;
     V get( long  timeout, TimeUnit unit)
         throws  InterruptedException, ExecutionException, TimeoutException;
}

   在Future接口中声明了5个方法,下面依次解释每个方法的作用:

  • cancel方法用来取消任务,如果取消任务成功则返回true,如果取消任务失败则返回false。参数mayInterruptIfRunning表示是否允许取消正在执行却没有执行完毕的任务,如果设置true,则表示可以取消正在执行过程中的任务。如果任务已经完成,则无论mayInterruptIfRunning为true还是false,此方法肯定返回false,即如果取消已经完成的任务会返回false;如果任务正在执行,若mayInterruptIfRunning设置为true,则返回true,若mayInterruptIfRunning设置为false,则返回false;如果任务还没有执行,则无论mayInterruptIfRunning为true还是false,肯定返回true。
  • isCancelled方法表示任务是否被取消成功,如果在任务正常完成前被取消成功,则返回 true。
  • isDone方法表示任务是否已经完成,若任务完成,则返回true;
  • get()方法用来获取执行结果,这个方法会产生阻塞,会一直等到任务执行完毕才返回;
  • get(long timeout, TimeUnit unit)用来获取执行结果,如果在指定时间内,还没获取到结果,就直接返回null。

  也就是说Future提供了三种功能:

  1)判断任务是否完成;

  2)能够中断任务;

  3)能够获取任务执行结果。

  因为Future只是一个接口,所以是无法直接用来创建对象使用的,因此就有了下面的FutureTask。

三.FutureTask

  我们先来看一下FutureTask的实现:

1
public  class  FutureTask<V>  implements  RunnableFuture<V>

   FutureTask类实现了RunnableFuture接口,我们看一下RunnableFuture接口的实现:

1
2
3
public  interface  RunnableFuture<V>  extends  Runnable, Future<V> {
     void  run();
}

   可以看出RunnableFuture继承了Runnable接口和Future接口,而FutureTask实现了RunnableFuture接口。所以它既可以作为Runnable被线程执行,又可以作为Future得到Callable的返回值。

  FutureTask提供了2个构造器:

1
2
3
4
public  FutureTask(Callable<V> callable) {
}
public  FutureTask(Runnable runnable, V result) {
}

  事实上,FutureTask是Future接口的一个唯一实现类。

四.使用示例

  1.使用Callable+Future获取执行结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
public  class  Test {
     public  static  void  main(String[] args) {
         ExecutorService executor = Executors.newCachedThreadPool();
         Task task =  new  Task();
         Future<Integer> result = executor.submit(task);
         executor.shutdown();
         
         try  {
             Thread.sleep( 1000 );
         catch  (InterruptedException e1) {
             e1.printStackTrace();
         }
         
         System.out.println( "主线程在执行任务" );
         
         try  {
             System.out.println( "task运行结果" +result.get());
         catch  (InterruptedException e) {
             e.printStackTrace();
         catch  (ExecutionException e) {
             e.printStackTrace();
         }
         
         System.out.println( "所有任务执行完毕" );
     }
}
class  Task  implements  Callable<Integer>{
     @Override
     public  Integer call()  throws  Exception {
         System.out.println( "子线程在进行计算" );
         Thread.sleep( 3000 );
         int  sum =  0 ;
         for ( int  i= 0 ;i< 100 ;i++)
             sum += i;
         return  sum;
     }
}

   执行结果:

  View Code

  2.使用Callable+FutureTask获取执行结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
public  class  Test {
     public  static  void  main(String[] args) {
         //第一种方式
         ExecutorService executor = Executors.newCachedThreadPool();
         Task task =  new  Task();
         FutureTask<Integer> futureTask =  new  FutureTask<Integer>(task);
         executor.submit(futureTask);
         executor.shutdown();
         
         //第二种方式,注意这种方式和第一种方式效果是类似的,只不过一个使用的是ExecutorService,一个使用的是Thread
         /*Task task = new Task();
         FutureTask<Integer> futureTask = new FutureTask<Integer>(task);
         Thread thread = new Thread(futureTask);
         thread.start();*/
         
         try  {
             Thread.sleep( 1000 );
         catch  (InterruptedException e1) {
             e1.printStackTrace();
         }
         
         System.out.println( "主线程在执行任务" );
         
         try  {
             System.out.println( "task运行结果" +futureTask.get());
         catch  (InterruptedException e) {
             e.printStackTrace();
         catch  (ExecutionException e) {
             e.printStackTrace();
         }
         
         System.out.println( "所有任务执行完毕" );
     }
}
class  Task  implements  Callable<Integer>{
     @Override
     public  Integer call()  throws  Exception {
         System.out.println( "子线程在进行计算" );
         Thread.sleep( 3000 );
         int  sum =  0 ;
         for ( int  i= 0 ;i< 100 ;i++)
             sum += i;
         return  sum;
     }
}


本文转载自海 子博客园博客,原文链接:http://www.cnblogs.com/dolphin0520/p/3949310.html 如需转载自行联系原作者
相关文章
|
1月前
|
Java 编译器 开发者
深入理解Java内存模型(JMM)及其对并发编程的影响
【9月更文挑战第37天】在Java的世界里,内存模型是隐藏在代码背后的守护者,它默默地协调着多线程环境下的数据一致性和可见性问题。本文将揭开Java内存模型的神秘面纱,带领读者探索其对并发编程实践的深远影响。通过深入浅出的方式,我们将了解内存模型的基本概念、工作原理以及如何在实际开发中正确应用这些知识,确保程序的正确性和高效性。
|
14天前
|
存储 缓存 安全
Java内存模型(JMM):深入理解并发编程的基石####
【10月更文挑战第29天】 本文作为一篇技术性文章,旨在深入探讨Java内存模型(JMM)的核心概念、工作原理及其在并发编程中的应用。我们将从JMM的基本定义出发,逐步剖析其如何通过happens-before原则、volatile关键字、synchronized关键字等机制,解决多线程环境下的数据可见性、原子性和有序性问题。不同于常规摘要的简述方式,本摘要将直接概述文章的核心内容,为读者提供一个清晰的学习路径。 ####
35 2
|
23天前
|
存储 安全 Java
深入理解Java中的FutureTask:用法和原理
【10月更文挑战第28天】`FutureTask` 是 Java 中 `java.util.concurrent` 包下的一个类,实现了 `RunnableFuture` 接口,支持异步计算和结果获取。它可以作为 `Runnable` 被线程执行,同时通过 `Future` 接口获取计算结果。`FutureTask` 可以基于 `Callable` 或 `Runnable` 创建,常用于多线程环境中执行耗时任务,避免阻塞主线程。任务结果可通过 `get` 方法获取,支持阻塞和非阻塞方式。内部使用 AQS 实现同步机制,确保线程安全。
|
2月前
|
Java 开发者
深入探索Java中的并发编程
本文将带你领略Java并发编程的奥秘,揭示其背后的原理与实践。通过深入浅出的解释和实例,我们将探讨Java内存模型、线程间通信以及常见并发工具的使用方法。无论是初学者还是有一定经验的开发者,都能从中获得启发和实用的技巧。让我们一起开启这场并发编程的奇妙之旅吧!
31 5
|
2月前
|
算法 安全 Java
Java中的并发编程是如何实现的?
Java中的并发编程是通过多线程机制实现的。Java提供了多种工具和框架来支持并发编程。
18 1
|
2月前
|
缓存 监控 Java
Java中的并发编程:理解并应用线程池
在Java的并发编程中,线程池是提高应用程序性能的关键工具。本文将深入探讨如何有效利用线程池来管理资源、提升效率和简化代码结构。我们将从基础概念出发,逐步介绍线程池的配置、使用场景以及最佳实践,帮助开发者更好地掌握并发编程的核心技巧。
|
2月前
|
安全 Java 测试技术
掌握Java的并发编程:解锁高效代码的秘密
在Java的世界里,并发编程就像是一场精妙的舞蹈,需要精准的步伐和和谐的节奏。本文将带你走进Java并发的世界,从基础概念到高级技巧,一步步揭示如何编写高效、稳定的并发代码。让我们一起探索线程池的奥秘、同步机制的智慧,以及避免常见陷阱的策略。
|
2月前
|
Java
JAVA并发编程系列(13)Future、FutureTask异步小王子
本文详细解析了Future及其相关类FutureTask的工作原理与应用场景。首先介绍了Future的基本概念和接口方法,强调其异步计算特性。接着通过FutureTask实现了一个模拟外卖订单处理的示例,展示了如何并发查询外卖信息并汇总结果。最后深入分析了FutureTask的源码,包括其内部状态转换机制及关键方法的实现原理。通过本文,读者可以全面理解Future在并发编程中的作用及其实现细节。
|
3月前
|
C# 开发者 数据处理
WPF开发者必备秘籍:深度解析数据网格最佳实践,轻松玩转数据展示与编辑大揭秘!
【8月更文挑战第31天】数据网格控件是WPF应用程序中展示和编辑数据的关键组件,提供排序、筛选等功能,显著提升用户体验。本文探讨WPF中数据网格的最佳实践,通过DevExpress DataGrid示例介绍其集成方法,包括添加引用、定义数据模型及XAML配置。通过遵循数据绑定、性能优化、自定义列等最佳实践,可大幅提升数据处理效率和用户体验。
61 0
|
5月前
|
Java C++
关于《Java并发编程之线程池十八问》的补充内容
【6月更文挑战第6天】关于《Java并发编程之线程池十八问》的补充内容
49 5